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Abstract—This paper proposes a effective urgent speech de-
tection for voicemails focused on speech rhythm. Previous tech-
niques use short-term features with millisecond scale (such as
fundamental frequency, loudness and spectral features), and
conventional techniques for urgent speech detection use also
features obtained from entire speech (such as average speech
rate). However, the features obtained from entire speech are too
over-smoothed to explain the difference between urgent and non-
urgent speech. We found that there was a difference between
urgent and non-urgent speech in temporal variability related
to speech rhythm. To handle the temporal variability of speech
rhythm, the proposal extracts long-term temporal features. The
long-term temporal features are envelope modulation spectrum
and temporal statistics of Mel-frequency cepstrum coefficient
with 1 sec scale. To use both features with different time scales,
the proposed method integrates the long-term temporal features
and the short-term features on neural networks. Our proposal
yields better accuracy than the conventional methods (which uses
e features obtained from entire speech); it achieves a 50.0%
reduction in the error rate.

I. INTRODUCTION

Some contact centers provide automatic reception services
based on voicemail systems during non-business hours. It is
important that contact centers preferentially respond to urgent
voicemail messages. There some urgent voicemails that cannot
be judged only by the text information obtained by automatic
speech recognition. Therefore, the aim of this paper is to detect
urgent voicemails without using text.

Techniques have been proposed for estimating para-
linguistic information, such as emotion and urgency. The
methods of [1], [2] use prosodic features, such as fundamental
frequencies (F0), loudness, and average speech rate. The meth-
ods focus on the difference in average prosody between urgent
and non-urgent speech; the former have higher F0, loudness,
and speech rate. In tasks other than voicemails, such as 911
calls [3], [4], smart speaker [5], [6] and shout detection [7],
the urgent situation detection techniques use spectral features,
such as Mel-frequency Cepstrum Coefficients (MFCC), etc.
The MFCCs represent the vocal tract characteristics of speech.
The methods focus on the differences in the vocal tract
characteristics between urgent and non-urgent situations even
for the same word (e.g. “Help”). In emotion recognition tasks,
features other than F0, power and MFCC have been used to
improve estimation accuracy [8], [9], [10], [11], [12]. Most
emotion recognition techniques use F0, loudness and MFCC
as are used for urgency detection. As evidenced by the emotion
recognition schemes that use speech rate [13], speech rate is an

effective feature for urgency detection. To use speech rate, it is
thought necessary to transcribe speech manually or recognize
speech by using automatic speech recognition (ASR).

The more urgent the voicemail is, the more variable its
speech rhythm often becomes; the speech rhythm in urgent
situations often is disturbed. The previous methods do not
handle the variability of speech rhythm. The features that
have millisecond scales, which are called low-level descriptors
(LLDs) and used for emotion recognition, can capture rapid
and local variability of prosodic and spectral characteristics,
but cannot model speech rhythm on the time scale of seconds
as their temporal features are too short-term. On the other
hand, the features obtained from entire voicemails such as
average speech, which are used in previous techniques for
urgent voicemail detection, rate are over-smoothed and so
cannot explain the variability of speech rhythm. To detect
urgent voicemails more accurately, it is necessary to use
temporal features that can well represent the variability of
speech rhythm.

This paper proposes urgency detection techniques focused
on the temporal variability of speech rhythm. The proposed
method uses not only short-term features on the millisecond
scale, but also long-term temporal features on the second
scale to well handle the temporal variability of speech rhythm.
The long-term temporal features are introduced to capture the
variability that short-term features have difficulty in modeling
and that can be over-smoothed by features of the entire
voicemail. As long-term temporal features, this paper uses
envelope modulation spectrum (EMS) and temporal statistics
of MFCCs. EMS is a representation of the slow amplitude
modulation in a signal and is used for discriminating dysarthria
[14]. The temporal statistics of MFCCs is a representation of
the temporal phonetic variation and is used for speech rate
estimation [15]. To well integrate the temporal features that
have different periods, the proposed method inputs the features
to different recurrent neural networks (RNNs). The features are
concatenated in the neural networks including the RNNs, and
used for urgent voicemail detection. We conduct an experiment
to rank our proposals against previous techniques.

II. URGENCY DETECTION

This section describes the baseline and the conventional
methods of urgency detection.
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A. Task description

The task of this paper is detection of voicemail urgency.
The classes are urgent and non-urgent. urgent means a voice-
mail whose creator (customer) requires an urgent response,
non-urgent means a voicemail that does not require such a
response. Estimation of urgent or non-urgent voicemail can
be formulated as follows:

ĉ = argmax
c∈C

p(c|U,Θ) (1)

where ĉ is estimated urgent, C is the set of urgency classes
where we set C = {0, 1} (Class 1 means urgent and Class 0
means non-urgent), U represents the features of the voicemail
and p(c|X,Θ) is a urgency estimation model that outputs the
posterior probability of urgency y when given U and Θ. In
this paper, the feature set U and the model architecture of
p(c|U,Θ) are different between the baseline, conventional and
proposed methods. The models are based on neural networks.

B. Baseline method

The baseline uses only low-level descriptors (LLDs) which
are short-term features. The model architecture is shown in
Fig. 1. The model is based on emotion recognition techniques
[9], [11]. The network architecture is as follows:

hX = RNN(x1, · · · ,xT1
;ΘX) (2)

p(c|U,Θ) = SOFTMAX(w1hX + b1) (3)

where RNN() is a recurrent neural network which takes as
input LLDs x1, · · · ,xT1

, and outputs hidden vector hx, ΘX

represents the trainable parameters of RNN, SOFTMAX() is
a function to calculate softmax activation in (), w1 and b1

are trainable parameters to perform a linear transformation of
hX . When multiple features are used, such as MFCC, F0

and power, the LLDs are analyzed using the same analysis
window length. The network does not use average speech rate
for urgency detection.

C. Conventional method

The conventional techniques uses average speech rate,
which is a long-term feature not a temporal feature, for
urgency detection [2]. The model that combines LLDs and the
metric (scaler) of average speech rate for urgency detection,
is shown in Fig. 2. To use average speech rate features, the
network architecture is as follows:

hX = RNN(x1, · · · ,xT ;ΘX) (4)
p(c|UX ,Θ) = SOFTMAX(w2[hX , y] + b2) (5)

where [hX , y] is the concatenation of vector hX and scaler
y, w2 and b2 are a trainable parameters that allow linear
transformation of the concatenated vector [hX , y]. To calculate
average speech rate y, ASR is used for counting mora. The
speech rate can be calculated by dividing the number of mora
counted by ASR by the duration of the speech.

III. PROPOSED METHODS

This section describes the proposed methods for urgency
detection focusing on speech rhythm.

A. Approach

Our approach uses the long-term temporal features to obtain
the variability of speech rhythm. We assume that the more
urgently a voicemail is uttered, the more variable its speech
rhythm becomes; the rhythm of speech uttered in urgency situ-
ations is often disturbed. To handle speech rhythm variability,
EMS and temporal statistical of MFCCs are used for urgent
voicemail detection. EMS and temporal statistics of MFCCs
are long-term temporal features with scale of 1 second, and
are related to speech rhythm according to [15]. Fig. 3 and Fig.
4 show urgent and non-urgent speech signals and the features
of the same speaker, respectively. To plot the fluctuation in
speech features, principal component analysis (PCA) of the
speech rhythm features was performed, and the first principal
component of result of PCA are shown. It is clear that the
PCA of EMS of non-urgent voicemails exhibit more regular
fluctuation than urgent speech and the PCA of statistical of
MFCCs demonstrate less fluctuation than urgent speech. Our
proposal uses this difference in feature fluctuation between
urgent and non-urgent speech.

B. Long-term temporal feature

This paper uses long-term temporal features based on the
online speech rate estimation technique [15]. We use two
speech features: envelope modulation spectrum (EMS) and
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Fig. 3. Urgent speech and the first principal component of feature related
to speech rhythm
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Fig. 4. Non-urgent speech and the first principal component of feature
related to speech rhythm

temporal statistics of MFCCs. To obtain speech features, the
analysis window was set longer than that used in the extraction
of LLDs.

1) EMS: EMS is used for discriminating dysarthria as
speech rhythm features, and is a representation of slow ampli-
tude modulation in a signal [14]. The speech signal is passed
through a range of octave band filters, after which an envelope
is extracted from each individual octave. EMS is feature based
on characteristics of envelope, and consists of peak frequency,
peak amplitude, and energy ratio of spectrum of envelope.

2) Temporal statistics of MFCCs: The temporal statistics
of MFCCs, which are representations of phonetic variation,
are calculated from the LLD of MFCC [15]. After extracting
LLD, the statistics of LLD are calculated on the second scale
window, such as 1 second. As the statistics, we calculate the
mean, standard deviation, maximum value, skewness, kurtosis,
and mean absolute deviation within the long frame window
according to [15].

C. Fusion of short-term features and long-term temporal
features in neural network

Our proposed network inputs the features gathered using
different analysis window lengths. Short-term features capture
rapid and local variability of LLDs. Our proposed long-term
features handle the slow variation in speech rhythms. The
model architecture, shown in Fig. 5, is as follows:

hX = RNN(x1, · · · ,xT ;ΘX) (6)
hZ = RNN(z1, · · · , zT2

;ΘZ) (7)
p(c|U,Θ) = SOFTMAX(w3[hX ,hZ ] + b3) (8)

where z1, · · · , zT2 are the speech rhythm features, hz is
hidden vector obtained by RNN, ΘZ is the trainable parameters
of RNN, w3 and b3 are trainable parameters needed to perform
linear transformation of concatenated vector [hX ,hZ ] . To
input the two features, the network has two input layers with
different analysis window lengths.

IV. EXPERIMENTS

To evaluate the proposed methods, we conducted urgency
detection using simulated voicemails data.

A. Dataset

In this paper, we use newly recorded and annotated voice-
mails. The task is frozen food selling and includes several
subtasks such as inquiries, cancelling or additional orders
during non-business hours. First, we set the situation, and
urgency information in each sub-task to create 12 useful
scenarios. Next, we recorded voicemails via phone sets while
following the scenarios but the speech sentences was uttered
on the fly. The result was 240 voicemails by 20 speakers.
Total length was 2.2 hours and the average length was about
30 seconds. All were monaural recorded, 8 kHz with 16 bit
format.

Urgency labels for voicemails were annotated by three
people. Samples were used for urgent voicemail detection
only if all annotators assigned the same urgency labels to
each. Finally, we obtained 120 urgent samples and 100 non-
urgent samples. Cohen’s kappa of labeling urgency for three
annotators was 0.89.

B. Setup

1) Feature extraction: We extracted three features with
different windows: 1) short-term features called LLDs with
millisecond time scale (Short-term), 2) long-term temporal
features with second time scale (Long-term temporal), 3)
features extracted from entire voicemails (Entire). The short-
term features were 28 dimensional acoustic features; 12 di-
mensional Mel-Frequent Cepstral Coefficients (MFCCs), loud-
ness, fundamental frequency (F0), the first order derivatives of
MFCCs , loudness, and F0. The features were extracted using
25 millisecond windows with 10 millisecond shift. The long-
term temporal features were envelope modulation spectrum
(EMS) and temporal statistics of MFCCs. The features were
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TABLE I
EXTRACTION CONDITIONS OF ENVELOPE MODULATION SPECTRUM (EMS)

Center frequency 30, 60, 120, 240,
of octave band [Hz] 480, 1920, 3480

Feature metrics Peak frequency in 0-10Hz
Peak amplitude in 0-10Hz

Energy from 3-6Hz
Energy from 0-4Hz

Energy from 4-10Hz
Energy ratio between 0-4 Hz and 4-10 Hz

extracted using 1 second windows with 10 millisecond shift.
The conditions of EMS extraction are shown in Table I.
EMS dimension was 42, which are based on a 7 octave
band filter and 6 feature metrics. The six statistical features
of MFCCs consisted of mean, standard deviation, maximum
value, skewness, kurtosis and mean absolute deviation of
MFCCs (extracted as 12 dimensional MFCCs) and power,
the first, second order derivatives of them. The dimension
of MFCC statistics was 39 * 6 = 234. The long-term (but
not temporal) features was average speech rate of each entire
voicemail. The average speech rate was calculated by two
methods: 1) automatic determination by automatic speech
recognition (ASR), 2) manual calculation by using transcribed
text (Oracle).

2) Neural network training: In the baseline, the conven-
tional and the proposed network, LSTM with attention layer
was used for RNN; the output of which was a 32 dimensional
hidden vector. In the proposed network, two LSTMs were
used for RNN which outputs a 64 dimensional hidden vector.
Optimizer was Adam with the learning rate of 0.001; the
dropout rate was 50%. We measured performance in term of
accuracy as determined by 10-fold cross validation. We used
1/10 of the samples as the test set. We trained all models 5
times in each condition and compared the accuracy attained
relative to the highest performance.

C. Results and discussion

Performance comparisons of the baseline, the conventional
and the proposed method are shown in Table II. Our proposal,
which used both short- and long-term temporal features at
no.(9), yielded the highest performance, and achieved 89.5%
and 50.0% error reduction from the conventional method using
oracle average speech rate (3). This shows that the long-
term temporal features related to speech rhythm are more
effective for urgency detection than the speech rate features
of voicemails.

The conventional methods, (2),(3), are better than the base-
line method, (1) with regard to average speech rate. The
proposed methods, (7), (8), (9), are superior to conventional
methods, (2), (3). It is indicated that our proposed long-term
temporal features explain the difference between urgent and
non-urgent speech more clearly than the average speech. In
the proposed methods, the short-term features, (7), (8), (9)
are also more effective than using only EMS and the MFCC
statistics, (4), (5), (6). This indicates that the short- and long-
term features focus on different features of urgent speech. In
urgent situations, the short-term features may be intended to
implement rapid changes in prosody and voice tract, while the
long-term features may be intended to handle slow changes in
prosody, such as speech rhythm. In the proposed methods, the
temporal statistics of MFCCs, (5), (8) are more effective than
EMS, (4),(7). Since Japanese is a pitch accent language, the
EMS did not represent more than the temporal statistics of
MFCCs; EMS is related to speech rhythm as altered by stress
but not pitch accent. The EMS might be effective for urgency
detection if stress accenting is prevalent.

V. CONCLUSIONS

In this paper, we proposed an urgent message detection
method that uses long-term temporal features. The previous
methods use short-term features, called LLDs, and average
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TABLE II
ACCURACY OF URGENCY DETECTION.

Short-term Long-term temporal Entire Acc.
EMS MFCC Speech rate

(1) Baseline ✓ - - - .748
(2) Conventional ✓ - - ✓(ASR) .776
(3) ✓ - - ✓(Oracle) .790
(4) Proposed - ✓ - - .709
(5) (no short-term) - - ✓ - .732
(6) - ✓ ✓ - .755
(7) Proposed ✓ ✓ - - .791
(8) ✓ - ✓ - .886
(9) ✓ ✓ ✓ - .895

speech rate of entire voicemails. However, the features ob-
tained from entire voicemails cannot explain the difference
in temporal speech rhythm between urgent and non-urgent
voicemails. Our proposal utilizes the fact that the speech
rhythm of urgent voicemails is more variable than that of
non-urgent voicemails. To obtain the features related to speech
rhythm, we extract the EMS and temporal statistics of MFCCs
using windows of the scale of seconds. To handle different
duration windows, the proposed network inputs the short- and
the long-term temporal features into different RNNs, and uses
the hidden vectors output by RNNs for urgency detection. Our
proposed method achieved 89.5% higher accuracy and 50.0%
stronger error reduction compared to the conventional method.
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