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Abstract—Replay attacks have been proven to be a potential
threat to practical automatic speaker verification systems. In this
work, we explore a novel feature based on spectral entropy
for the detection of replay attacks. The spectral entropy is
a measure to capture spectral distortions and flatness. It is
found that the replay speech carries artifacts in the process of
recording and playback. We hypothesize that spectral entropy
can be a useful information to capture such artifacts. In this
regard, we explore multi-band spectral entropy feature for replay
attack detection. The studies are conducted on ASVspoof 2017
Version 2.0 database that deals with replay speech attacks.
A baseline system with popular constant-Q cepstral coefficient
(CQCC) feature is also developed. Finally, a combined system is
proposed with multi-band spectral entropy and CQCC features
that outperforms the baseline. The experiments validate the idea
of multi-band spectral entropy feature.

I. INTRODUCTION

Automatic speaker verification (ASV) deals with authenti-

cating a claimed identity for a given speech [1]–[3]. It has

increased attention from the community due to various possi-

ble applications in the recent years. Some of the applications

already have shown success for practical systems [4]–[9].

However, such systems under practice are found to be vulnera-

ble to the spoofing attacks [10], [11]. In general, there are four

broad categories of spoofing attacks, namely, impersonation,

text-to-speech, voice conversion and replay attacks [10], [11].

Among these text-to-speech and voice conversion are synthetic

speech attacks, whereas impersonation is a behavioral attack.

Again, replay attacks, also known as presentation attacks are

one of the most easiest way to perform spoofing attacks

by using recorded speech samples of a particular speaker.

In this work, we focus on replay attacks that are the most

common way for spoofing speaker identity. Figure 1 shows an

illustration of replay attacks, where a replayed speech signal

is used for unauthorized access.

The countermeasures to spoofing attacks are designed to

identify the spoofing attacks based on the artifacts extracted

from given speech. In this regard, a myriad of front-end

methods have been explored that can capture relevant infor-

mation to identity such attacks. The earlier works focused on

far-field recording based replay attacks that used noise and

reverberation to classify spoofed speech [12], [13]. The authors

of [14] proposed a spectral bitmap based method to identify

the replay attacks for text-dependent speaker verification.

Later, such methods are applied to replay detection in text-

independent speaker verification in terms of average spectral

Fig. 1. An illustration of replay spoofing attacks.

bitmap models [15]. Another study based on spectral features

and score normalization was carried out for replay speech

detection in [16].

The drive to spearhead anti-spoofing research in terms of

ASVspoof series of challenge led many recent works to design

various countermeasures [17]. In the year 2017, ASVspoof

2017 challenge was organized that focuses particularly on

replay speech detection [18]. The constant-Q cepstral coef-

ficient (CQCC) with Gaussian mixture model (GMM) forms

the baseline for the challenge [19], [20]. It is to be noted that

CQCC feature has been found to be very effective for synthetic

speech detection and replay speech is also no exception to

it compared to existing features. A comparative analysis of

different features for replay detection is presented in [21].

Few other explorations by various participating groups in that

challenge include epoch strength and peak to side lobe ratio

based features [22], variable length Teager energy separation

based instantaneous frequency feature [23], high frequency

features [24], phase features [25] and hierarchical scattering

decomposition coefficients [26]. The studies reported in these

works show the importance of front-end features for detection

of replay attacks.

During post ASVspoof 2017 challenge evaluation, few

anomalies are found out that showed beep sounds and few

broken examples. The presence of beep sounds and broken

examples has a definite impact on the overall performance.

Therefore, those beep sounds were cut out along with the

removal of broken examples and a second version 2.0 of the

database was released [27]. A comparison of GMM and i-

vector systems is reported that showed the former is more use-

ful for modeling in this task [28], [29]. Further, the usefulness

of log-energy feature as well as cepstral mean and variance

normalization (CMVN) [30] has been shown to contribute

towards improved detection of spoofing attacks. Followed by

the release of ASVspoof 2017 Version 2.0 database, several
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investigations have been made to detect replay attacks. Some

of these include extended CQCC features [31], modulation

spectrum [32], instantaneous phase, excitation source fea-

tures [33] and low frequency frame normalization [34]. Again,

the importance of various long range acoustic features and

deep features are shown recently in [35], [36].

The investigations on various countermeasures show that

the front-end features are more effective for detection of

spoofing attacks. Therefore, we focus on finding novel front-

end countermeasure in this work. Most of these existing front-

end features capture either magnitude or phase information

of the signal with some representation. The replay speech

is generated using recorder and a playback device, thus the

produced replayed signal possesses the device characteristics

as well as the background environment information. The

effects thus incurred in the replayed signal have definite impact

on the spectrum that can be used as artifacts for discriminating

it from genuine speech.

The entropy is originally defined for information sources

by Shannon [37]. It plays a central role in the context of

pattern classification and information technology as a metric

of disorganization or uncertainty in a random variable, such

as information and choice. The concept of entropy has been

adopted to the field of speech technology to apply in voice

activity detection [38] and speech recognition [39], exhibiting

significantly improved performance. In this work, we explore

a multi-band spectral entropy feature that measures the power

spectral flatness of the spectrum to capture the distortions

present in replayed speech. The use of multi-band is motivated

by effectiveness of various subbands features for spoof detec-

tion [40]. The proposed feature is used to extract the formants

variations and their temporal locations in the spectrum, which

is observed to be different for genuine and replay speech. The

studies in this work are conducted on ASVspoof 2017 Version

2.0 corpus for replay speech detection.

The rest of the paper is organized as follows. Section II

details the multi-band spectral entropy feature. The results and

experiments are reported in Section III. Finally, Section IV

concludes the work.

II. MULTI-BAND SPECTRAL ENTROPY

The spectral entropy is a measure to capture the spectral

distortions and spectral flatness. It is computed over short-

term processed speech signal. For every frame of the signal,

the power spectral density is computed using fast Fourier

transform (FFT). The raw spectrum also contains pitch in-

formation and therefore it is smoothed by applying a linear

filter bank before entropy computation to emphasize the high

frequency component. To compute the entropy of a spectrum,

the spectrum should be like a probability mass function (PMF),

where the area under the spectrum sums up to 1. Therefore,

the individual frequency components of the short-term Fourier

transform (STFT) spectrum is divided by the sum of all the

components to convert the spectrum into a PMF like function.

xi =
Xi∑N

i=1
Xi

, for i = 1 to N (1)

Algorithm 1 : Multi-band Spectral Entropy

1: Let x(n) be the input speech signal.

2: Pre-process x(n) by a pre-emphasis filter to obtain xp(n).
3: For each short term frame of 20 ms, i.e., xf , multiply it

with Hamming window to obtain xh.

4: Compute FFT for the windowed signal xh to obtain X(w).
5: Compute the power spectral density (PSD) from the FFT,

i.e., X(w) to obtain PSD spectrum

PSD =
|X(w)|2

N

6: Multiply PSD with the linear filter bank to obtain PSDl.

7: For each frequency subband of 200 Hz, convert the m-th

subband spectrum to a PMF like function

psdi =
PSDl i∑N

i=1
PSDl i

,

8: Compute the multi-band spectral entropy H(M), where

M = 1, . . . ,m, for every subband from the normalized

spectrum psdi,

H(M) = −

N∑

i=1

psdi. log
2
(psdi)

where Xi is the power spectral density of i-th frequency

component of the spectrum, x = x1, . . . , xN is the PMF of

the spectrum and N is the number of points in the spectrum.

The normalized spectrum can be treated as a PMF, where the

area under the normalized spectrum sums to 1. By converting

a spectrum to PMF, the peak capturing property of entropy can

be explored. A PMF with sharp peaks will have low entropy,

while a PMF with flat distribution will have high entropy. For

each frame, the entropy H is computed from x as follows

[39],

H = −

N∑

i=1

xi. log
2
xi (2)

The explorations on using entropy from the full-band spec-

trum is found to be not that effective as it captures only

the gross peakiness of the spectrum and cannot resolve the

locations for the peaks. Therefore, in order to capture the

location of the peaks, the idea of multi-band entropy features

was introduced in [41]. The full-band spectrum is divided

into several non-overlapping subbands of equal size. Each

subband spectrum is then converted into a PMF so that the

area under each normalized subband spectrum sums up to 1.

Using Equations (1) and (2), the entropy for each subband

PMF is separately computed and one entropy value is obtained

for each subband. These subband entropy values indicate

the presence or absence of peaks in that particular subband.

Further, the number of subbands determines the dimensionality

of the feature vector. We also note that different components

of the entropy feature vector have different dynamic ranges

and activation points depending upon occurrence of a peak in
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Fig. 2. (a) is waveform of a genuine utterance of “Birthday parties have cupcakes and ice cream”, (b) and (c) are corresponding spectrogram and entropy
contour. (d) and (g) are waveform of two replayed instances of (a); (e) and (f), (h) and (i) are their corresponding spectrogram and entropy contour, respectively.

a particular subband. Algorithm 1 presents the detailed steps

followed to obtain the multi-band spectral entropy feature.

Figure 2 shows the comparison of a genuine speech with

its two replayed signal instances taken from ASVspoof 2017

Version 2.0 corpus. On comparing their spectrograms, we

observe apparent differences between the genuine and replayed

versions. The replayed speech is produced by use of record-

ing and playback device in various environments. Thus, the

device and environment characteristics have an impact on the

replayed signal. Due to such effects the formant distributions

and positions are different in replayed signal from that in the

genuine speech signal. It is observed from Figure 2 that there

are high frequency contents in the replayed speech instances.

These information can play a crucial role as artifacts for

detection of replay spoofing attacks. We then observe the

entropy contours for the genuine and the replay speech.

Figure 2 (c), (f) and (i) show that the spectral entropy

for genuine speech signal has smooth pattern and manages

to track most of the formants which are represented by the

contour unlike the case with replay speech. For the genuine

spectrogram with distinct and clear peaks, the voiced regions

of a speech signal induce low entropy and the unvoiced regions

produce higher entropy, which results in a high variance

of entropy. On the contrary, for the replayed speech signal

with noise region introduced by environment, recording and

playback devices, the spectrogram has a flatter and more even

distribution and the corresponding entropy is obtained with

modest amplitude on average. The variance of entropy for the

spoofed utterance is comparatively smaller than that of the

corresponding genuine speech. This is because the entropy

obtained from the voiced and noisy regions do not differ much

for the replayed utterance compared to that in genuine speech.

Thus, the entropy of a signal can capture useful information

that be effective for detection of replay attacks.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we discuss the details of the database,

experimental setup and the results of various studies conducted

for replay speech detection.

A. Database

The ASVspoof 2017 database is constituted by a subset of

RedDots data [42] collection and its replay derivatives [27].

The genuine speech is obtained directly from the original

corpus and replay attack based speech utterances are replayed

versions of the speech from RedDots corpus. The RedDots

corpus is designed for text-dependent speaker verification and

therefore each utterance has around 2-3 seconds duration. The

replay derivatives are generated using various recording and

playback devices in different environments. The dataset is

designed to contain a diverse range of replay configurations

with a unique combination of recording environment, replay

and recording device ranging from conditions. The dataset has

three non-overlapping subsets, namely, training, development

and evaluation set. The train and development set are used

to build models and optimize the parameters for the studies.

The studies are then to be repeated on the evaluation set for

reporting results. Further, there are less number of variabilities

in terms of recording configurations in train and development

set. On the other hand, the evaluation set has many unseen

devices and replay is made in different recording scenarios.

Equal error rate (EER) is used as a metric to report the
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TABLE I
SUMMARY OF ASVSPOOF 2017 VERSION 2.0 CORPUS [27].

Database
# Speakers

# Replay # Utterances

Subset Configurations Genuine Spoofed

Train 10 3 1,507 1,507
Development 8 10 760 950

Evaluation 24 57 1,298 12,008

performance for replay attack detection. Table I shows the

detailed composition of ASVspoof Version 2.0 corpus.

B. Experimental Setup

A baseline system is implemented before considering the

system with multi-band spectral entropy feature. The CQCC

features with log-energy coefficients are used for the baseline

system. The CQCC features are derived using constant-Q

transform (CQT) based long-term window transform. It is to be

noted that we followed the same configurations while extract-

ing CQCC features as mentioned by the original authors [19],

[20]. The studies in [27] showed that GMM based system

outperformed the results of i-vector based system. Hence, we

have chosen GMM as the test bed for our models. Two GMMs

of 512 mixture components are then learned to have models

for genuine and replay speech. We note that the examples of

the train set are used to build these models that are evaluated

on the development set. However, we combined the train and

development set examples to learn the models for the studies

with evaluation set. Given a test speech, its CQCC features

are extracted then log-likelihood is computed with respect to

both the models to obtain a log-likelihood ratio. The score thus

obtained is compared to a threshold for detecting the replay

attacks.

In case of multi-band spectral entropy feature, a pre-

emphasis filter is first applied to the speech signal to exploit

high frequency information [43]. The speech signal is short-

term processed with 20 ms Hamming window with a shift

of 10 ms. We have varied the number of subbands and have

fixed as 40 according to the best possible results on the

development set. Thus, the static feature dimension of the

multi-band spectral entropy feature is 40. The delta (∆) and

delta delta (∆∆) features are also extracted for the studies.

On top of the extracted features, CMVN is applied to fit it to

zero mean and unit variance. Once the features are extracted

GMM models are build as explained in the case of baseline

system and rest of the system pipeline remains the same.

In this work, we also study the complementary information

carried by the spectral entropy feature to that carried by the

CQCC features. A score level combination of the results of

the two systems are made as given in [44], [45]. We note that

the weights of the two systems are learned on the development

set and then applied on the evaluation set. The fusion system

is expected to provide improved results over the baseline due

to the different nature of information carried by each feature.

C. Results and Discussion

Table II shows the performance of multi-band spectral

entropy feature on ASVspoof Version 2.0 corpus. The feature

TABLE II
PERFORMANCE IN EER (%) OF MULTI-BAND SPECTRAL ENTROPY

FEATURE FOR DIFFERENT COEFFICIENT CONFIGURATIONS.

Configuration Development Evaluation

S 13.55 18.06
∆ 13.30 17.70

∆∆ 15.70 19.61
S +∆ 13.50 17.52

∆+∆∆ 14.52 18.43
S +∆+∆∆ 13.25 18.85

TABLE III
PERFORMANCE IN EER (%) OF FUSION SYSTEM AND COMPARISON.

System Development Evaluation

Multi-band
13.30 17.70

Spectral Entropy

MFCC 18.04 20.78

CQCC 8.93 12.64

Multi-band Spectral Entropy + CQCC

Fusion 7.33 11.16

is studied for different coefficient configurations. It is found

that the configuration ∆ gives the optimal result on the

development set. We have therefore highlighted the results

under that setting. This kind of trend to have better results

for dynamic coefficients is well supported by previous in-

vestigations for different features [19], [20]. Then the CQCC

feature based well known system is also evaluated that forms

the baseline. Further, we consider another contrast system

based on mel frequency cepstral coefficient (MFCC) feature

for comparison [46]. Table III reports the results of these

three features for comparison. We observe that the multi-

band spectral entropy feature based system outperforms the

system with MFCC features showing importance of entropy

information than the traditional way of capturing spectral

information. The CQCC based system performs better than the

two systems as it contains the long-term signal characteristics.

We then perform the score level fusion of systems with

multi-band spectral entropy and CQCC features. The fusion

of the two systems is tuned on the development set. Table III

shows that the fused system performs the best among three

different systems considered. This depicts the complemen-

tary nature of information captured by spectral entropy from

widely popular CQCC features that is useful for replay attack

detection. Further, it confirms the complementary nature of

information captured by both the features. The future work

will focus on using spectral entropy with long-term features

to have improved detection of replay attacks.

IV. CONCLUSION

This work focuses on exploring spectral entropy extracted

from the subbands as a novel attribute for replay speech

detection. The spectral entropy captures the spectral distortions

and flatness that are unique for genuine and replay speech.

The multi-band spectral entropy feature extracted is used to

study the replay attacks using ASVspoof 2017 Version 2.0

database. The studies reveal that the spectral entropy has

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

841



definite characteristics to distinguish replay speech from the

genuine counterparts. Further, the fusion of such information

with long-term CQCC features shows fruitful results highlight-

ing its importance for detection of replay attacks.
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