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Abstract Acoustic-to-articulatory inversion has potential 
application in number of fields. For decades, average root 
mean square error and Pearson correlation coefficient are the 
most prevalent quantities adopted to evaluate the performance 
of acoustic-to-articulatory inversion. Various inversion 
methods have been developed to less the average root mean 
square error, but very few studies explored whether the 
average root mean square error is appropriate for evaluating 
and comparing the performance of different inversion 
methods. In this study, we attempt to tackle this issue by 
comparing not only the average root mean square error but 
also channel root mean square error of each articulatory 
channel, and the root mean square error of the critical and 
non-critical portions of each articulatory channel for methods 
within and between different groups.  It is found that: i) the 
root mean square error of each articulatory channel, and the 
root mean square error of the critical and non-critical portions 
of each articulatory channel decrease while the average root 
mean square error decrease if the AAI methods belong to the 
same group; ii) exceptions are found if the inversion methods 
belong to different categories; iii) the average root mean 
square error is dominated by that of non-critical portions of 
articulatory channels. This suggests that new methods, which 
pay more attention to the performance of acoustic-to-
articulatory inversion on critical articulators and facilitate the 
comparison of performance of methods belonging to different 
categories, should be developed in the future. 

1. INTRODUCTION 

Movements of articulators are slow and smooth compared to 
corresponding acoustic features. Hence, it naturally has 
advantages in applications which requires short-term steady 
features, such as speech synthesis, coding, and recognition. 
Though articulatory movement information is important, 
collecting articulatory movement data is not so easy as 
collecting acoustic signal data. It always requires some types 
of special instruments, such as ElectroMegnetic Articulograph 
(EMA), Ultrasound, MRI etc. But none of these instruments 
can be directly incorporated into the applications of flexible 
speech synthesis, speech recognition, and speech coding at site.   
Hence, the features of articulatory movements should be 
inferred from corresponding acoustic features, which is called 
acoustic-to-articulatory inversion (AAI). 

To tackle the AAI issue, for decades, a number of works has 
been conducted based on parallel acoustic-articulatory 
databases. In this case, the AAI is formulated as regression 
tasks, which produce an output form associated input based on 
models trained on input-output data pair. For this purpose, a 
number of studies have been carried out.  Various statistical 
models have been applied to the task of AAI, such as 

multilayer perceptron (MLP) [1] [2] [3], mixture density 
network[3], trajectory Gaussian Mixture Model[4], HMM-
based speech production model[5], trajectory HMM [6], deep 
forward trajectory density neural network[7], bidirectional 
long-short term memory RNN [8] [9]. And the effectiveness 
of the input acoustic features has been extensively studied. Qin 
[10] explored the effects of choosing different popular 
acoustic features (LPC, LSF, FBANK, MFCC, LPCC, PLP, 
RASTA-PLP) with and without dynamic features,  different 
short-time window lengths , and different levels of smoothing 
of the acoustic temporal trajectories on the performance of 
acoustic-to-articulatory inversion with MLP. Ghosh [11] used 
mutual information as the criterion to rank the MFCC and their 
derivative according to the information on different 
articulatory features in acoustic-to-articulatory  inversion. 
Some studies tried to incorporate phoneme information to 
enhance the performance of acoustic-to-articulatory inversion 
[12, 13].  To evaluate the AAI performance, the average Root 
Mean Square Error (a-RMSE) and Pearson correlation 
coefficient of all the measured articulatory channels are 
adopted in most of the previous studies. 

Nonetheless, whether the a-RMSE is appropriate for 
evaluating the performance of AAI has not been extensively 
investigated. To our knowledge, proper quantities for 
evaluating AAI performance should satisfy the following 
requirements at least: i) the RMSEs of each channel should 
decrease consistently while the a-RMSE decreases; ii) the 
RMSE of critical portion of movements of all critical channels 
should decrease consistently while the a-RMSE decreases (see 
Section 4.2 for definition). In this study, we make effects to 
shed light on these two issues by comparing the results 
obtained by four widely used AAI methods. 

2. DATASET 

2.1. The MOCHA database 
The publicly available multichannel articulatory database 
(MOCHA), released by the Centre for Speech Technology 
Research, University of Edinburgh, is used in this study.  In 
MOCHA database, the 460 British TIMIT sentences were 
uttered by two subjects, fsew0 and msak0. Four data streams 
were recorded: the waveform (16 kHz sample rate, with 16-bit 
precision for quantification) together with laryngograph, 
electropalatograph (EPG), and EMA data. The waveform 
signal and articulatory information were synchronized and 
output to a computer simultaneously.  

The EMA was used to retrieve the movement of articulators. 
For this purpose, coils were attached to upper lip (UL), lower 
lip (LL), lower incisor (LI), tongue tip (TT), tongue body (TB), 
tongue dorsum (TD) and velum (V) to track their positions 
while sentences were uttered. Each of these coils provided 
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horizontal (x) and vertical (y) coordinates in the midsagittal 
plane. Finally, 14 channels of articulatory information were 
recorded in total. Additional coils were attached to the nose 
bridge and the upper incisor to server as references. The 
movement of coils attached to the articulators were sampled 
with the sampling frequency of 500 Hz.  

2.2. Data processing 
Before feeding synchronized acoustic-articulatory data to 
train and evaluate different AAI methods, some pre-
processing procedure need be conducted. Firstly, silences at 
the beginning and end of each speech and corresponding EMA 
files are omitted, since articulators can possess any status at 
those silent part.  

The speech signals are transformed to MFCC parameters 
(12 mel-cepstral + 𝐶"  ) with the setting (Hamming window 
with the length corresponding to 25ms speech signals, frame 
shift with the length corresponding to 10ms speech signals, 
and 26 channels for filter-bank analysis) by using HTK speech 
recognition toolkit.  A context window of 11 frames are used 
to organize acoustic feature sequence into input sequence of 
model for AAI.   

The EMA data are bidirectionally filtered with a lowpass 
filter (10-order finite impulse filter with cutoff frequency of 
20Hz), first forward then backward, to remove the high-
frequency artifacts and avoid phase distortion. Then, the 
trajectory of 460 utterances’ means is smoothed by a Savitzky-
Golay filter (with the order of 5 and frame-size of 121) to 
obtain slow varying means of utterance. At last, the 
articulatory data of each utterance are normalize with the 
reference to the mean of each utterance [14]. To match the 
frame frequency of acoustic feature, the EMA data is down-
sampled 100 frames per second. The EMA frames 
corresponds to the 6th acoustic feature frame in the input 
sequence (a sequence of 11 frames of acoustic features) are 
extracted to formulate the target outputs for AAI. 

 Subject fsew0’s data is used in this study. The set of 460 
utterance is divided into 3 subsets with no overlap: a training 
set with 370 utterances, a validation set with 45 utterances, 
and a testing set with 45 utterances. 

3. METHODS 

3.1. Gaussian mixture model 
Let 𝒙$ , 𝒚$ , ∆𝒚$ , and ∆∆𝒚$ denote the acoustic parameter,  
the position, velocity, and acceleration of articulators at 
instance t, respectively Then,𝑿𝒕 = [𝒙$+,- , … , 𝒙$-, … , 𝒙$0,- 	]- , 
𝒀𝒕 = [𝒚$-, ∆𝒚$-, ∆∆𝒚$-	]-are the contextual acoustic parameter 
vector and articulatory parameter vector used to train a joint 
gaussian mixture model (GMM). The joint probability density 
function (PDF) p(𝑿$, 	𝒀$) is formulated as : 
𝑝(𝑿$, 	𝒀$) = ∑ 𝜋9𝒩(𝑿$, 	𝒀$; 𝝁9, 𝜮9)>

9?@                           (1) 

𝝁9 = A𝝁9𝑿
-, 𝝁9𝒀

-B
-
                                                              (2) 

 𝜮9 = C
𝜮9𝑿𝑿 𝜮9𝑿𝒀

𝜮9𝒀𝑿 𝜮9𝒀𝒀
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where 𝜋9 is the probability that the 𝑘$F distribution  
𝒩(𝑿$, 	𝒀$; 𝝁9, 𝜮9) is used to generate sample (𝑿$, 	𝒀$ ). 𝝁9𝑿  
and 𝝁9𝒀  are the mean of acoustic and articulatory parameter 
vectors of the 𝑘$Fcomponent, respectively. 𝜮9𝑿𝑿  and 𝜮9𝒀𝒀  are 
the covariance matrices of the 𝑘$F component of the acoustic 
and articulatory vectors, respectively. 𝜮9𝑿𝒀  is the cross-
covariance matrices of the  𝑘$F  component distribution 
between acoustic and articulatory parameter vectors, 
respectively. Then, the probability density function of 	𝒀$ 
given 𝑿$ could be expressed by Eq.4~7 
𝑝(	𝒀$|𝑿$) = ∑ 𝑤9𝒩(𝒀$|𝑿$; 𝝁9

𝒀|𝑿, 𝜮9
𝒀|𝑿)>

9?@                       (4) 
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+𝟏J𝑿 − 𝝁9𝑿K                                  (5) 

𝜮9
𝒀|𝑿 = 𝜮9𝒀𝒀 − 𝜮9𝒀𝑿J𝜮9𝑿𝑿K

+𝟏𝜮9𝑿𝒀                                          (6) 
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                                                       (7) 

3.1.1 Minimum mean square error estimation 
Given an acoustic parameter vector, the articulatory parameter 
vector can be determined by Eq. (8) if Minimum Mean Square 
Error (MMSE) criterion is taken.  

𝒀$T = ∑ 𝑤9𝝁9
𝒀|𝑿P>

9?@                                                            (8) 
The articulatory parameters estimated with MMSE are noisy 
since only the mean 𝝁9

𝒀|𝑿P  and the 𝑤9  of the PDF of the 
current frame is taken into account, and the information of the 
PDF of neighbor frame are omitted. This drawback can be 
overcome by using a trajectory model. 

3.1.2 Trajectory estimation  
The acoustic and articulatory vector trajectories of an 
utterance can be formulated as 𝑿 =
[𝑿@-, … , 𝑿$-, … , 𝑿U- ]- and 	𝒀 = [𝒀@-, … , 𝒀$-, … , 𝒀U- ]- . If the 
articulatory position vector is denoted by 𝒚 =
[𝒚@-, … , 𝒚$-, … , 𝒚U- ],  the relation between Y and y, would be: 
𝒀 = 𝑾𝒚                                                                                (9) 
where W is the same as the matrix that Tokuda et al. used in 
parameter trajectory generation for HMM-based speech 
synthesis[15]. For a given acoustic parameter sequence 𝑿, the 
articulatory position sequence 𝒚  can be estimated by using 
Maximum Likelihood Parameter Generation (MLGP) method: 
𝒚W = argmax

𝒚
𝑃(𝒀|𝑿)                                                              (10) 

Where 
𝑃(𝒀|𝑿) = ∑ 𝑃(𝒀|𝒎,𝑿)𝑃(𝒎|𝑿)_                                        (11) 
A sequence of the mixture component indices 
[𝑚@,… ,𝑚$, … ,𝑚U] is denoted as 𝒎 .  
𝑄J𝒀, 𝒀bK = ∑ 𝑃(𝒎|𝑿, 𝒀)𝒍𝒐𝒈𝑃(𝒎,𝒀|𝑿)fgg	𝒎 			=
	− @

h
𝒚W𝑻𝑾𝑻𝑫(𝒀)+𝟏kkkkkkkkk𝑾𝒚W + 𝒚W𝑻𝑾𝑻𝑫(𝒀)+𝟏𝑬(𝒀)kkkkkkkkkkkkkk + 𝑲                  (12) 

Where  

𝑫(𝒀)+𝟏kkkkkkkkk = 𝑑𝑖𝑎𝑔 r𝑫@
(𝒀)+𝟏	

kkkkkkkkk
, 𝑫𝟐

(𝒀)+𝟏	
kkkkkkkkk

, … ,𝑫$
(𝒀)+𝟏	

kkkkkkkkk
, … ,𝑫-

(𝒀)+𝟏	
kkkkkkkkk

t  (13) 
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𝜸_,$
(𝒁) = 𝑃J𝑚x𝑿$, 𝒀$, 𝝀(𝒛)K                                                      (17) 

𝒚W = {𝑾𝑻𝑫(𝒀)+𝟏kkkkkkkkk𝑾|
+@
𝑾𝑻𝑫(𝒀)+𝟏𝑬(𝒀)kkkkkkkkkkkkkk                                 (18)  

The articulatory trajectory can be obtained by iteratively 
minimize the Q function with Eq.13~18 

3.2. Neural network-based methods 

3.2.1 Multilayer perceptron  
MLP is a class of feedforward neural network. It consists of, 
at least, three layers of nodes: an input layer, a hidden layer, 
and an output layer. The nodes in hidden layers usually use 
nonlinear activation functions to transform their inputs into 
their outputs. And the nodes in the output layer usually use 
nonlinear activation functions for classification task, and 
linear activation for regression task. MLP can be trained using 
backpropagation method [16]. MLP can be used to 
approximate any nonlinear function with appropriate 
parameter setting. Hence, MLP has been implemented to 
various classification and regression tasks.  

In this study, we use an MLP with 2 hidden layers with 
sigmoid neurons to estimate articulatory trajectory. And each 
hidden layer has 300 neurons.  

3.2.2 Deep bidirectional LSTM RNN 
MLP can only use the input information of current frame, 
although this can flaw can be made up to some extent by using 
contextual feature frame. To consider the contextual 
information in a more natural way, recurrent connections can 
be inserting into a feedforward neural network, which is called 
recurrent neural network (RNN). RNN is able to remember 
previous inputs and allow them to persist in the network 
internal states with recurrent connections. Therefore, RNN 
can map the history of previous input vectors to each output 
vector.  

Nevertheless, articulatory parameter at current time 
correlates with the acoustic parameter at current time as well 
as those in the past and in the future. Hence, it is desirable to 
incorporate the future acoustic context for acoustic-to-
articulatory inversion. A Bidirectional RNN (BRNN) 
computes both forward hidden sequence ℎ~⃗ , and backward 
hidden sequence ℎ⃖~. The outputs from both the forward and 
backward pass are combined together to serve as the input to 
the output layer.  So, it is able to access past and future context 
by processing data in both directions.  

Unfortunately, because of the vanishing gradient problem, 
RNNs or BRNNs can only access a limited range of context. 
Long short term memory (LSTM) [17], which consists of a  
input gate, a forget gate, a outputs gate,  and a cell memory,  
is a solution to solve the vanishing gradient problem in RNN.  
Bidirectional LSTM (BLSTM) can be implemented by replace 

the normal neuron cells in hidden layers with LSTM cells. 
   In this study, the Deep Bidirectional LSTM (DBLSTM) 
network consists of four hidden layers, in which the inputs are 
connected to 2 feedforward neural networks with sigmoid 
activation function, then feed to 2 BLSTM layers. Each hidden 
layer has 300 neurons.  

4. RESULTS 

Here, we will present the results obtained by the four methods 
described Section 3. In this study, we attempt to explore: i) 
whether the RMSE of each channel decrease consistently 
while the a-RMSE decreases; ii) whether the RMSEs of 
critical portion of all the channels decrease consistently while 
the a-RMSE decreases.  So, the models’ parameters are mostly 
adopted from published papers, and are not extensively 
explored to make models achieve their best performance.  
When a model achieves comparable performance reported in 
corresponding literature, the parameter searching procedure 
for the model is stopped. Eq.19 and Eq.20 are adopted for 
calculating the root mean square error (RMSE) of each 
channel and the a-RMSE of all the channels. 

𝐸(𝑗) = �@
U
∑ J𝑦��,� − 𝑦�,�K

hU
�?@                                           (19) 

𝐸f�� =
@
U�
∑ 𝐸(𝑖)U�
�?@                                                          (20) 

where  𝑦�,�  is the ground truth of the jth channel of the ith 
sample, 𝑦��,�  is the corresponding estimate, and Nc is the 
number of articulatory channels. 

4.1.  RMSE of each channel 

Table 1. The average RMSE l obtained by four different 
inversion methods (unit: mm).  
	 MMSE	 Trajectory	 MLP	 DBLSTM	
Avg.		 1.68 1.50 1.56 1.37 

Table 1. presents the a-RMSEs obtained by the four methods, 
namely GMM-based MMSE (MMSE), GMM-based 
Trajectory (Trajectory), MLP, and DBLSTM. The a-RMSEs 
obtained by MMSE, Trajectory, and MLP methods are 
consistent with the results reported by Sudhakar[18], Toda[4], 
and Richmond[14] on the same database, respectively. As for 
the performance of DBLSTM methods for AAI, it is difficult 
to compare our work with previous works quantitatively since 
few results have been reported on MOCHA database. 
Fortunately, Liu[9] and Zhu[19] found that the a-RMSEs of 
DBLSTM are smaller that of MLP on MNGU0 database. 
Similar phenomenon is also observed in our experiments, 
which qualitatively proves that the results achieved by 
DBLSTM is reasonable. The above preliminary evaluation 
indicates that our experiment reproduced the results reported 
in previous studies. In addition, the obtained a-RMSEs are in 
the order that: DBLSTM < Trajectory < MLP < MMSE. 

Then, the four methods are grouped into two categories 
according to the criterions adopted to train and predict 
articulatory status. Among them, MMSE and Trajectory 
methods, which estimate the joint acoustic-articulatory PDF 
with maximum likelihood criterion and predict articulatory 
status based on the conditional PDF derived from the 
estimated joint PDF, are grouped into one category, while 
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MLP and DBLSTM, which estimate the model parameters 
based on least mean square error criterion and predict 
articulatory status directly from input acoustic parameters, are 
grouped into the other group. 
  Firstly, it is of interest to know whether the RMSE of each 
channel decreases consistently while the a-RMSE decreases 
for the methods belonging to the same group. Fig 1(a) and Fig 
1(b) presents the results of the two groups methods. As shown 
in Fig 1(a), all the channel-RMSEs of Trajectory method are 
smaller than those of MMSE method. Similar phenomenon is 
observed for MLP and DBLSTM methods. This indicates that 
the RMSE of each channel decreases consistently while the a-
RMSE decreases if the AAI methods are in the same group. 

(a) 

(b) 
Fig. 1 Comparison of the RMSE of each channel obtained by 
methods in the same group. (a) Comparison of channel 
RMSEs obtained MMSE and Trajectory method (b) 
Comparison of RMSEs obtained by MLP and DBLSTM 
method. 

Secondly, it is of interest to know whether the RMSE of 
each channel decreases consistently while the a-RMSE 
decrease for the methods belonging to different groups. Fig. 2 
presents the results of the comparison of the channel-RMSEs 
between the methods belong to different groups. As shown Fig 
2(a) and Fig 2(b), when comparison is made between the 
channel-RMSEs obtained by MMSE and by MLP/DBLSTM, 
it is observed that the RMSE of each channel decrease 
consistently while the a-RMSE decreases. However, 
exceptions are found when comparison is made between the 
channel-RMSEs obtained by Trajectory and by 
MLP/DBLSTM (TT_y in Fig 2(c), and V_x, V_y, UL_x in in 
Fig 2(d), denoted by black filled circles). It indicates that the 
channel-RMSEs do not necessarily decrease while the a-
RMSE decreases if the AAI methods belong to different 
groups.  

(a) 

(b) 

(c) 

(d) 
Fig. 2 Comparison of the RMSE of each channel obtained by 
methods in different groups. (a) Comparison of channel 
RMSEs obtained by MMSE and MLP methods (b) 
Comparison of channel RMSE obtained by MMSE and 
DBLSTM methods (c) Comparison of channel RMSEs 
obtained by Trajectory and MLP methods (d) Comparison of 
channel RMSEs obtained by Trajectory and DBLSTM 
methods.      

4.2 RMSEs of critical and non-critical portions 
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Theoretically, different articulators play different roles for 
producing specific speech sounds. For example, the position 
tongue tip is required to be in a very restricted area to form 
closure at the alveolar to produce speech sound /t/ and /d/, 
while the tongue body and lips are allowed to take positions 
with large variation. Accordingly, the tongue tip is the critical 
articulator and the other articulators are non-critical 
articulators when producing sound /t/ and /d/.  In continuous 
speech, for each articulatory channel, it serves as critical 
articulator in some portions (call critical portion) while serves 
as non-critical articulator in other portions (call non-critical 
portions) according to the identities of uttered phonemes. To 
take an further insight on the performance of the four methods 
on critical and non-critical portions of articulator channels, we 
annotate the articulators at each time stamp as 
critical/noncritical articulators with reference to the segmental 
information offered in MOCHA database and the criterion 
used by Papcun [1] and Okadome [20].  

Table 2 presents the result of average RMSE of critical (a-
crt -RMSE) and noncritical (a-ncrt-RMSE) articulators 
obtained by the four methods. For all the AAI methods, the a-
crt-RMSEs are in the order of DBLSTM < Trajectory < MLP 
< MMSE, and the a-ncrt-RMSEs are also in the order of 
DBLSTM < Trajectory < MLP < MMSE. But the a-ncrt-
RMSEs are nearly 25% larger than the a-crt-RMSEs. If 
comparing the results in Table 2 with the results in Table 1, 
one can find that the a-RMSEs are dominated by the a-ncrt-
RMSEs. 

Table 2. The average RMSEs of critical (denoted by crt) and 
noncritical (denoted by ncrt) portions of articulatory channels. 
	 MMSE Trajectory	 MLP	 DBLSTM	

ncrt crt ncrt crt ncrt crt ncrt crt 
Avg.		 1.69 2.26 1.51 2.00 1.57 2.04 1.39 1.69 

4.2.1 RMSEs of non-critical portions  

As discussed in Section 4.1, it is of interest to know whether 
the RMSE of non-critical portions of each channel decreases 
consistently while the a-RMSE decreases for the methods 
belonging to the same group. Fig 3(a) and Fig 3(b) presents 
the results of the two groups methods. As shown in Fig 3(a), 
all the ncrt-RMSEs obtained by Trajectory method are smaller 
than those obtained by MMSE method. Similar phenomenon 
is observed for MLP and DBLSTM methods. This indicates 
that the RMSE of non-critical portions of each channel 
decreases consistently while the a-RMSE decreases if the AAI 
methods belong to the same group.  

Furthermore, it is of interest to know whether the ncrt-
RMSE of each channel decreases consistently while the a-
RMSE decreases for the methods belonging to different 
groups. Fig 4 presents the results of the comparison of the ncrt-
RMSE of each articulatory channel between the methods 
belong to different groups. As shown Fig 4(a) and Fig 4(b), 
when comparison is made between the ncrt-RMSE of each 
channel obtained by MMSE and by MLP/DBLSTM, it is 
observed that the nct-RMSE of each channel decreases 
consistently while the a-RMSE decreases. However, 
exceptions are found when comparison is made between the 
ncrt-RMSE of each channel obtained by Trajectory and by 
MLP/DBLSTM (TT_y in Fig 4(c), and V_x, V_y, UL_x in in 

Fig 4(d), denoted by black filled circles). It indicates that the 
ncrt-RMSE of each channel does not necessarily decrease 
while the a-RMSE decreases if the AAI methods belong to 
different groups.  

(a) 

(b) 
Fig. 3 Comparison of the RMSE of non-critical portions of 
each channel obtained by methods belonging to the same 
group. (a) Comparison the RMSEs of non-critical channels 
obtained MMSE and Trajectory method; (b) Comparison of 
the RMSEs of non-critical channels obtained by MLP and 
DBLSTM method. 

4.2.2 RMSE of critical portions 

Since the position of critical articulators determine the identity 
of the utter speech sound, it is of interest to know whether the 
RMSE of critical portions of each channel decreases 
consistently while the a-RMSE decreases for the methods 
belonging to the same group. Fig 5(a) and Fig 5(b) presents 
the results of the two groups methods. As shown in Fig 5(a), 
all the crt-RMSEs obtained by Trajectory method are smaller 
than those obtained by MMSE method. Similar phenomenon 
is observed for MLP and DBLSTM methods. This indicates 
that the RMSE of critical portions of each channel decreases 
consistently while the a-RMSE decreases if the AAI methods 
belong to the same group.  

Furthermore, it is of interest to know whether the crt-RMSE 
of each channel decreases consistently while the a-RMSE 
decreases for the methods belonging to different groups. Fig 6 
presents the results of the comparison of the crt-RMSE of each 
articulatory channel between the methods belong to different 
groups. As shown Fig 6(a) and Fig 6(b), when comparison is 
made between the crt-RMSE of each channel obtained by 
MMSE and by MLP/DBLSTM, and by Trajectory and by 
DBLSTM, it is observed that the crt-RMSE of each channel 
decreases consistently while the a-RMSE decreases. However, 
exceptions are found when comparison is made between the 
ncrt-RMSE of each channel obtained by Trajectory and by 
MLP (TD_y, LL_y in Fig 6(c), denoted by black filled circles). 
It indicates that the crt-RMSE of each channel does not 
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necessarily decrease while the a-RMSE decreases if the AAI 
methods belong to different groups. 

(a)  

(b) 

(c) 

(d) 
Fig. 4 Comparison of the RMSE of non-critical portions of 
each channel obtained by methods in different groups. (a) 
Comparison of the RMSEs of non-critical portions obtained 
by MMSE and MLP methods; (b) Comparison of the RMSEs 
of non-critical portions obtained by MMSE and DBLSTM 
methods; (c) Comparison of the RMSEs of non-critical 
portions obtained by Trajectory and MLP methods; (d) 
Comparison of the RMSEs of non-critical portions obtained 
by Trajectory and DBLSTM methods. 

   

     
(a)                                                 (b) 

Fig. 5 Comparison of the RMSE of critical portions of each 
channel obtained by methods belonging to the same group. (a) 
Comparison the RMSEs of critical portions obtained MMSE 
and Trajectory method; (b) Comparison of the RMSEs of 
critical portions obtained by MLP and DBLSTM method. 

 
(a)                                               (b) 

    
(c)                                          (d) 

Fig. 6 Comparison of the RMSE of critical portions of each 
channel obtained by methods in different groups. (a) 
Comparison of the RMSEs of critical portions obtained by 
MMSE and MLP methods; (b) Comparison of the RMSEs of 
critical portions obtained by MMSE and DBLSTM methods; 
(c) Comparison of the RMSEs of critical portions obtained by 
Trajectory and MLP methods; (d) Comparison of the RMSEs 
of critical portions obtained by Trajectory and DBLSTM 
methods. 

5. CONCLUSION 

In this study, preliminary analysis is conducted on the 
performance of different AAI methods, which roughly belong 
to two different categories.  It is found that the RMSE, crt-
RMSE, and ncrt-RMSE of each articulatory channel decrease 
while the a-RMSE decreases if the AAI methods belong to 
same category. While some exceptions are found if the AAI 
methods belong to different categories. This indicates that a-
RMSE maybe proper for comparing the performance of 
methods belonging to the same categories, but not appropriate 
for comparing the performance of methods belonging to 
different categories. Therefore, when comparing the 
performance of methods from different categories with a-
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RMSE, one should keep in mind that the decrease of a-RMSE 
doesn’t necessarily mean the decrease other important 
measures. Besides, it’s found that a-RMSEs are dominated by 
ncrt-RMSEs, and the crt-RMSEs are about 25% larger than 
the ncrt-RMSEs. This suggests that new methods, which pay 
more attention to the performance of AAI on critical 
articulators and facilitate the comparison of performance of 
inversion methods belonging to different categories, should be 
developed in the future. 
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