
Improving Automatic Jazz Melody Generation
by Transfer Learning Techniques

Hsiao-Tzu Hung∗†, Chung-Yang Wang† Yi-Hsuan Yang†‡, Hsin-Min Wang∗
∗ Institute of Information Science, Academia Sinica, Taipei, Taiwan

† Taiwan AI Labs, Taipei, Taiwan
‡ Research Center for IT Innovation, Academia Sinica, Taipei, Taiwan

E-mail: {fbiannahung,wangyygogo}@gmail.com, yhyang@ailabs.tw, whm@iis.sinica.edu.tw

Abstract—In this paper, we tackle the problem of transfer
learning for Jazz automatic generation. Jazz is one of rep-
resentative types of music, but the lack of Jazz data in the
MIDI format hinders the construction of a generative model
for Jazz. Transfer learning is an approach aiming to solve the
problem of data insufficiency, so as to transfer the common
feature from one domain to another. In view of its success in
other machine learning problems, we investigate whether, and
how much, it can help improve automatic music generation for
under-resourced musical genres. Specifically, we use a recurrent
variational autoencoder as the generative model, and use a
genre-unspecified dataset as the source dataset and a Jazz-only
dataset as the target dataset. Two transfer learning methods are
evaluated using six levels of source-to-target data ratios. The first
method is to train the model on the source dataset, and then
fine-tune the resulting model parameters on the target dataset.
The second method is to train the model on both the source
and target datasets at the same time, but add genre labels to
the latent vectors and use a genre classifier to improve Jazz
generation. Our subjective evaluation shows that both methods
outperform the baseline method that uses Jazz data only for
training by a large margin. Among the two methods, the first
method seems to perform better. Our evaluation also shows the
limits of existing objective metrics in evaluating the performance
of music generation models.

I. INTRODUCTION

Deep learning-based machine learning algorithms have been
increasingly employed for automatic music composition in
recent years [1]–[3]. Typically, this is done by collecting a
large dataset of machine-readable musical scores of existing
music, in formats such as MIDI files,1 and then using neural
network models, such as the generative adversarial model
(GAN) [4] and variational autoencoder (VAE) [5], to learn to
compose new music via learning from the provided dataset.
For example, the Lakh Pianoroll Dataset (LPD) is a public-
domain dataset compiled by Dong et al. for building a GAN
model for multitrack music composition [6]; it encompasses
50,266 four-bar MIDI phrases of Rock/Pop music in 4/4 time
signature. As another example, Roberts et al. [7] attempted
to collect a large number of MIDI files from the Web to
train a VAE model for generating melodies (monophonic
note sequences) for unspecified musical genres; it is said
that around 1.5 million unique MIDI files were found and
downloaded.

1[Online] https://www.midi.org/

TABLE I
THE PERCENTAGE OF MELODY LABELED WITH DIFFERENT GENRE TAGS IN
THE THEORYTAB (TT) DATASET. IT CONTAINS 11,329 MELODIES, AND IS

USED AS THE “SOURCE DOMAIN” DATASET IN THIS WORK.

Jazz Folk Dance Electronic Rock Pop Unlabeled
2.12% 2.12% 6.23% 10.70% 9.04% 11.25% 58.54%

The main advantage of such deep learning-based models
for automatic music composition, compared to the rule-based
or genetic algorithm-based algorithms studied by researchers
decades ago [8], appears to be their unprecedented ability
to find their own ways in learning from big data. We have
already seen from the literature promising examples that use
deep learning to learn to compose music for musical genres
such as Rock [6], Pop [9], and Classical music [11]. Common
to these genres is the availability of MIDI files from the Web,
providing sufficient data to train deep learning models.

However, this is not the case with many main musical genres
in the world. An obvious example is Jazz, which often features
live improvisations (i.e., with spontaneously invented melodic
solo lines or accompaniment parts). In other words, a complete
Jazz music piece is rarely composed offline with a MIDI
editor; rather, Jazz is usually created online with spontaneous
interaction among musicians. Extra effort is required to listen
to the audio recording of a Jazz performance and carefully
transcribe it by hand into a MIDI file. Consequently, MIDI
files for Jazz music are relatively scarce on the Web.

To illustrate this, we wrote a crawler to download a total
of 11,329 melody phrases from an online music theory forum
called TheoryTab.2 As shown in Table I, only 2.12% of the
melodies were labeled as Jazz by the contributing forum users.
Pop and Rock, for example, have around five times more data.

To our best knowledge, little work has been done recently
on building automatic Jazz composition. One prominent prior
work is the work by Trieu and Keller [3], who employed
GAN to build a model called JazzGAN for chord-conditioned
melody composition. However, likely due to the reasons out-
lined above, the dataset they used to train JazzGAN contained
only 44 leadsheets, approximately 1,700 bars.

In the machine learning community, many “transfer learn-

2TheoryTab is hosted by Hooktheory, a company that produces educational
music software and books ([Online] https://www.hooktheory.com/theorytab).

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

339978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

https://www.midi.org/
https://www.hooktheory.com/theorytab

ing” techniques have been proposed to address the data
scarcity of target tasks [12]–[15]. The idea is to find a related
source task where the training data is easier to collect, and
then adapt the model of the source task to the model of the
target task with a small dataset in the target domain. Given
the relative richness of non-Jazz MIDI data, a natural research
question is whether, and how much, we can leverage a large
genre-unspecified source domain MIDI dataset to improve the
model for Jazz with a small genre-specific target domain MIDI
dataset.

In this paper, we aim to address the following research
questions.
• Can we use a genre-unspecified music dataset to improve

a Jazz melody generation model?
• Which transfer learning technique is more useful for this

task?
• Does a transfer learning method benefit from increasing

the size of the source domain data?
For the second research question, we evaluate two canonical
transfer learning methods in this work: model fine-tuning and
multitask learning (see Section IV). For the third research
question, we consider six levels of source-to-target data ratios
(see Section V-A). For performance evaluation, we follow the
recent work of Yang and Lerch [17] and adopt seven different
criteria for quantitative evaluation (see Section V-B).

While a piece of Jazz music can be composed of multiple
tracks/instruments, we only focus on the melody in this work.
In addition, we consider the task of “unconditioned” Jazz
melody generation, i.e., generating melodies without any pre-
determined conditions or information. This scenario is more
challenging, yet practically more flexible and potentially more
useful, than the “chord-conditioned” scenario addressed by
JazzGAN [3], where a sequence of accompanying chord labels
is given to inform the melody generation model.

Certainly, Jazz is not the only “under-resourced” [16] genre
in music. Since our problem formulation is generic, it is hoped
that the lessons learned here can also be applied to other
musical genres. In addition, the problem may be interesting
for general machine learning researchers as well, as transfer
learning is more commonly employed for discriminative tasks
such as classification and regression, rather than generative
tasks such as automatic generation.

The paper is organized as follows. Section II provides
background knowledge on transfer learning. Sections III and
IV present the datasets and models used in this work. Section
V details on the evaluation setup. Section VI discusses the
evaluation results. Finally, Section VII concludes the paper.

II. BACKGROUND

A. Transfer Learning

The general idea of transfer learning is to learn knowledge
from one task and apply it to another task. Generally, there
will be two tasks A and B. Both tasks have the same input
type, such as image and audio. Our main task is B, but the
dataset for task B is much more smaller than the dataset for

TABLE II
THE TWO DATASETS USED IN THIS WORK. A PHRASE IS DEFINED AS A

FOUR-BAR SEGMENT SAMPLED FROM A SONG.

TT (source) CY+R (target)
Genre diverse Jazz only
Song length segment segment
Track melody, chord melody
Musical key C major, C minor C major
Time signature 4/4 4/4
Number of phrases 9,640 1,608
Number of bars 38,560 6,432

A, which may not be enough for training. Assuming that tasks
A and B share some low-level features, we can improve task
B by learning task A first. There are two training steps for
transfer learning. The first step is to train the model on the
dataset of task A, which is often referred to as “pre-training.”
The second step is to further train the model obtained in the
first step on the dataset of task B, which is called ‘fine-tuning.”
There are many transfer learning methods based on such a pre-
training/fine-tuning strategy. An overview of recent techniques
can be found in [20].

In recent years, transfer learning based on the above strategy
has been widely used in many machine learning problems in
computer vision (CV) and natural language processing (NLP).
Well-known examples include the use of the first few layers
of deep models trained on the ImageNet object recognition
task as visual feature extractors for other CV tasks [14] and
the use of Google’s pre-trained BERT model to get word and
sentence embedding features for downstream NLP tasks [15].

B. Transfer Learning in Music-related Tasks

Transfer learning techniques have also been applied to
several discrminative tasks in the field of music information
retrieval (MIR). For example, in [19], a convnet was trained
for music tagging, and then transferred to other music-related
classification and regression tasks. The tags of the source task
include genres, instruments, moods, and eras. The target tasks
include vocal/non-vocal classification and general audio event
classification. There are many other examples, all of which are
concerned with classification or regression tasks [21]–[24].

To our best knowledge, transfer learning techniques have
not been used for automatic music composition. Researchers
either work on genres with easy-to-access MIDI data (e.g.,
Rock and Pop) [6] or a general model using genre-unspecified
MIDI data [7].

III. DATASETS

For this study, we have collected a clean Jazz-only dataset
as the target dataset, and a genre-unspecified dataset as the
source dataset. The two datasets are summarized in Table II.

The target dataset, referred to as the CY+R dataset here-
after, consists of two small Jazz music collections. The first
collection consists of 575 four-bar melody phrases composed
by one of the authors, who is a well-trained musician. All

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

340

Encoder Decoder

GRU dense dense GRU
𝜇

𝜎

𝑁(0,1)

𝑧

target

Encoder Decoder

GRU dense dense GRU
𝜇

𝜎

𝑁(0,1)

𝑧

source

Encoder Decoder

GRU
dense dense GRU

𝜇

𝜎

𝑁(0,1)

𝑧

target

Encoder

GRU dense dense GRU
𝜇

𝜎

𝑁(0,1)

𝑧

Decoder

source

sample

Classifier

GRU dense

sigmoid
!" ∈ [0,1]

target
(y=1)

source
(y=0)

Encoder Decoder

GRU dense dense GRU
!

"

#(0,1)

)

y
+

(y=[1,0])

(y=[0,1])

(a) (b) (c)

Fig. 1. Model architectures and training flows of the methods evaluated in this paper. (a) The baseline methods trained only on the source dataset (upper)
or the target dataset (lower). (b) The “fine-tuning” method that pre-trains a model using the source dataset (upper) and then fine-tunes the model using the
target dataset (lower). (c) The “multi-task” method that introduces an additional genre label y as a conditional variable so as to train the model together on
the source and target datasets (upper), with a separately trained genre classifier for further improving Jazz generation (lower).

phrases are soft Jazz music. The second collection comes from
the Jazz Realbook,3 which contains 240 unique songs.

The musician manually split out a few four-bar phrases from
each song, ensuring that each phrase has a musically plausible
ending. Finally, there are 1,608 four-bar phrases in CY+R,
1,446 phrases for training, and 162 phrases for testing.

The source dataset contains 11,329 melody phrases down-
loaded from TheoryTab4. As shown in Table I, more than 50%
of the data are genre-unspecified. Although a small portion of
them were labeled as Jazz, we checked the songs and found
that some of the labels were unreliable. For example, “Hard
To Say I’m Sorry” by Chicago was wrongly labeled as Jazz. In
addition, most Jazz songs were style-wise quite different from
our target dataset. Therefore, we ignored the genre labels and
treated all the melodies as genre-unspecified. We use ‘TT’ as
the abbreviation for the TheoryTab dataset. Each song in TT is
saved separately, including intro, chorus, verse, and outro. The
intros of most songs in TT are composed of broken chords,
which means repeating some notes from the chords, and they
may not be considered as melodies. Therefore, the intros are
excluded from the TT dataset, leaving 9,640 four-bar phrases.
The ratio of training data to testing data is 9:1, i.e., 90% for
training, and 10% for testing.

Table II summarizes the two datatsets. Both datasets are in
4/4 time signature. The CY+R dataset is written in C-major
scale, and each melody phrase is transposed to the C major or
C minor key in TT dataset. In order to broaden the diversity
of generated melodies, we keep both C major and C minor
songs in the TT dataset.

A. Representation of a melody phrase

There are multiple ways to computationally represent a
melody phrase. For example, Trieu and Keller investigated and
compared the so-called “event-based” and “time step-based”

3[Online]https://www.profesordepiano.com/Real%20Book/Realbook.htm
4Note that the data scraped from TheoryTab is in the so-called lead sheet

format, containing both the melody track and the chord track. We ignore the
chord track in this work, since we consider unconditioned melody generation.

representations of melody [3]. In this work, we adopt the time
step-based method and represent each four-bar melody phrase
as a fixed-size matrix.5 This matrix-like representation has also
been referred to as the pianoroll representation [25], where
the horizontal axis denotes time (time step), and the vertical
axis denotes frequency (MIDI note). For each bar, we set the
height of the matrix to 48 (considering MIDI notes from C3
to B6) and the width (time resolution) to 16 (i.e., 16 time
steps per bar, or equivalently 4 time steps per beat in 4/4 time
signature). As a result, the size of the target output tensor for
melody generation is 4 (bars) × 16 (time steps) × 48 (MIDI
notes) × 1 (track).

IV. METHODOLOGY

A. Model Architecture

Following [26], we adopt a recurrent VAE model here.
In the encoder part, four-bar melody sequences are fed into
bidirectional gated recurrent units (BGRU) to learn the cor-
relation between bars. The outputs of all GRU time steps
are then concatenated and passed through several dense (i.e.,
fully-connected) layers to get the embedding vector. In other
words, given an observed input melody x, the encoder Eθ with
parameter set θ encodes x into a latent vector z = Eθ(x).

In the decoder part, a latent vector z is sampled from a
normal distribution characterized by µ and σ, and then passed
through several fully-connected layers parameterized by φ to
separately form the initial states of melody. The outputs are
processed by a unidirectional GRU with a sigmoid activation
layer to finally output an four-bar pianoroll. This model is
illustrated in Fig. 1(a), either the upper or lower panel.

B. Method 1: Fine-tuning

As with the basic process in transfer learning, we can train
the model in two stages, as illustrated in Fig. 1(b). First, we
pre-train the recurrent VAE model with TT. In this stage, the

5One advantage of the time step-based representation over the event-based
representation is that we can more easily emphasize the beat position of notes.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

341

https://www.profesordepiano.com/Real%20Book/Realbook.htm

goal of training is to let the model learn what melody is. Here,
the learning rate is set to 1e−3, and the ADAM optimization
algorithm is used to accelerate stochastic gradient descent. As
for the objective function, we use the classic binary cross-
entropy and KullbackLeibler divergence (KLD) losses. The
model parameters are obtained by maximizing the following
variational lower bound:

L(θ, φ;x) = Lrecon(x) + Llat(x) , (1)

where Lrecon = Eqφ(z|x)[log pθ(x | z)] is the reconstruction
term, and Llat = −DKL(qφ(z | x) ‖ p(z)) regularizes the
encoder to align the approximate posterior qφ(z | x) with the
prior distribution p(z). pθ(x | z) is the data likelihood.

In the second stage, we fine-tune the model using the Jazz
dataset CY+R. The goal is to let the model learn what Jazz
is. The learning rate in this stage is set to 1e−5 for t < 40,
1e−7 for 40 ≤ t < 80, and 1e−9 for t ≥ 80, where t denotes
the epoch. Other parameters remain the same.

C. Method 2: Multitask Learning

Here, we additionally concatenate a one-hot genre label y to
the latent vector z, as shown in Fig. 1(c). We train the model
on both TT and CY+R at the same time and regard them as
two different tasks for the model to work on. For the Jazz
dataset CY+R, we set the label y = [0, 1]; for TT, we set the
label y = [1, 0].

To evaluate whether our model learns to generate two
different types of melodies, we pre-train a genre classifier C(·)
to see if the output melody has the Jazz elements. The classifier
basically has the same structure of the VAE encoder, but
changes the output size of the final fully-connected layer to 1.
When a generated melody passes through the genre classifier,
the classifier outputs the probability of Jazz. We apply sigmoid
activation to the output neuron of the last layer, and optimize
the classifier using a cross-entropy loss. The training goal is
to output 1 for Jazz and 0 for non-Jazz. As a result, after
the output melody is generated by our VAE model, it will be
passed through the classifier and a probability ŷ = C(x) will
be obtained.

We define the genre prediction loss as Lgenre(ŷ, y) and add
it to the objective function of VAE. Accordingly, the recurrent
VAE model trained under the multitask learning based transfer
learning method is optimized with the following objective
function:

L(θ, φ;x, y) = Lrecon(x, y) + Llat(x) + Lgenre(ŷ, y) (2)

Please note that, unlike the case in Eq. (1), here the recon-
struction loss Lrecon additionally consider the provided genre
label y.

V. EVALUATION SETUP

A. Evaluated Models

As our goal is to compare the effectiveness of the fine-tuning
method and the multi-task learning method, we implement
both of them in the evaluation. In order to examine how the
transfer learning methods benefit from increasing the size of

the source domain training data, we consider six levels of
source-to-target data ratios (R):

R =
number of non-Jazz training phrases

number of Jazz training phrases
, (3)

where R ∈ {1, 2, ..., 6}. Moreover, as depicted in Fig. 1(a),
we implement two baseline models. The first model is trained
on the small, Jazz-only CY+R dataset; this can be considered
as the case when R = 0. This model may not even learn what
melody is because the training set is really small. The second
baseline model is trained only on the large, genre-unspecified
TT dataset; this can be considered as the case when R =∞.
This model may not learn what Jazz is because the training
set contains music of arbitrary genres.

B. Feature Metrics

In order to evaluate the quality of generated melody, some
features are extracted based on the work of Yang and Lerch
[17]. The features describe two aspects of music, including
pitch- and rhythm-related ones.

The pitch-related features, including the following four,
describe the preferences for arranging pitch:
• Pitch count (PC): The pitch count is the number of

unique pitches within a phrase. The output is a scalar
for each phrase.

• Pitch class histogram (PCH): The pitch class histogram
is a 12-dimensional, octave-independent representation of
the pitch content for achromatic scale [27].

• Pitch class transition matrix (PCTM): The transition of
pitch classes contains useful information for tasks such as
key detection, chord recognition, and genre recognition
[17]. The two-dimensional pitch class transition matrix
is a histogram-like representation computed by counting
the pitch transitions for each (ordered) pair of notes. The
resulting matrix size is 12×12.

• Pitch range (PR): The pitch range is calculated as the
difference between the highest and lowest MIDI pitches
in semitones within a phrase. The output is a scalar for
each phrase.

The rhythm-related features, encompassing the following
three, describe how the notes are arranged:
• Note count (NC): The note count is the number of notes

within a phrase. As opposed to the pitch count, the note
count does not contain pitch information, but a rhythm-
related feature that records only how many notes are in
the phrase. The output is a scalar for each phrase.

• Note length histogram (NLH): To extract the note length
histogram, we define a set of allowable beat length classes
[full, half, quarter, 8th, 16th, dot half, dot quarter, dot
8th, dot 16th, half note triplet, quarter note triplet, 8th
note triplet]. The length of a bar is defined to contain
96 unit lengths, and each note length is quantized to the
nearest number of unit lengths. The rest option, when
activated, will double the vector size to represent the same
length classes for rests. The output vector has a length of

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

342

TABLE III
OVERLAPPING AREA (OA) BETWEEN THE TRAINING MELODIES AND THE

MELODIES GENERATED BY METHOD 1.

Method 1: fine-tuning
R = 1 R = 2 R = 3 R = 4 R = 5 R = 6

NC 0.7997 0.7941 0.8385 0.7690 0.7713 0.7677
NC/bar 0.8006 0.8380 0.8280 0.8005 0.7939 0.7963
NLH 0.7286 0.7185 0.7485 0.7203 0.7074 0.6976
NLTM 0.9158 0.8850 0.9179 0.8855 0.8869 0.8856
PC 0.6387 0.5986 0.6859 0.6515 0.6690 0.6770
PC/bar 0.8106 0.8123 0.8510 0.7833 0.7919 0.7851
PR 0.6676 0.6436 0.7134 0.6956 0.6824 0.7063
PCH 0.3198 0.3029 0.3733 0.3424 0.3679 0.3545
PCTM 0.6091 0.6227 0.6113 0.6918 0.7120 0.7355
average 0.6990 0.6906 0.7298 0.7044 0.7092 0.7117

either 12 (for notes) or 24 (12 for notes and 12 for rests),
respectively.

• Note length transition matrix (NLTM): Similar to
PCTM, the note length transition matrix provides useful
information for rhythm description. The matrix size is
12×12 or 24×24.

C. Overlapping Area (OA)
Yang and Lerch [17] proposed to use Overlapping Area

(OA) as an evaluation measure. The rational is given below. To
compare different output sets, relative measurements may be
a better choice instead of using the mean of features directly.
Through relative measurements, the diversity of the dataset
can be obtained.

There are three steps in calculating the OA:
1. A pairwise exhaustive cross-validation is first performed for

each feature. In each cross-validation step, the Euclidean
distance of one sample to each of the other samples is
computed. If the cross-validation is conducted on the sam-
ples in the same set, the intra-set distances are calculated.
If we compare each sample in one set with all samples in
another set, we calculate the inter-set distances. The output
of the cross-validation process is a histogram of distances
for each feature.

2. In order to smooth the histogram results for a more general
representation, kernel density estimation [18] is applied
to convert the histogram into a Probability Distribution
Function (PDF).

3. After getting the PDFs of the target dataset and the gen-
erated melodies, OA is used to compare them. Since the
melodies are generated under random sampling conditions
of a Gaussian distribution, there is no overfitting problem.
The Kullback-Leibler Divergence (KLD) is commonly used

to compare two distributions. However, since in discrete
probability distributions, KLD is calculated in an element-wise
manner, PDFs with an identical shape (as indicated by similar
Kurtosis and Skewness) but shifted on the x-axis (distinct in
the mean value) yield insignificant differences in KLD. In this
case, OA is able to indicate the differences.

VI. EXPERIMENTAL RESULTS

In this section, we discuss the experimental results.The
source codes for the experiments and the demo page are

TABLE IV
OVERLAPPING AREA (OA) BETWEEN THE TRAINING MELODIES AND THE

MELODIES GENERATED BY METHOD 2.

Method 2 : multitask learning
R = 1 R = 2 R = 3 R = 4 R = 5 R = 6

NC 0.8536 0.8724 0.8412 0.7972 0.8002 0.8098
NC/bar 0.8449 0.8474 0.8562 0.8073 0.8218 0.8278
NLH 0.7661 0.7713 0.7631 0.7485 0.7341 0.7621
NLTM 0.9292 0.9166 0.9132 0.9055 0.8874 0.8631
PC 0.7157 0.7434 0.7349 0.7344 0.7146 0.7219
PC/bar 0.8582 0.8593 0.8637 0.8176 0.8157 0.8184
PR 0.7544 0.7261 0.7470 0.7299 0.7320 0.7585
PCH 0.3938 0.3862 0.3478 0.4062 0.2810 0.3991
PCTM 0.6670 0.6290 0.6575 0.6982 0.7142 0.7416
average 0.7536 0.7502 0.7472 0.7383 0.7223 0.7447

TABLE V
THE PERFORMANCES OF DIFFERENT METHODS.

Baseline 1 Baseline 2 Method 1 Method 2
(source) (target) (R=3) (R=1)

NC 0.7847 0.8287 0.8385 0.8536
NC/bar 0.8200 0.8393 0.8280 0.8449
NLH 0.6914 0.7407 0.7485 0.7661
NLTM 0.8520 0.9081 0.9179 0.9292
PC 0.6530 0.7039 0.6859 0.7157
PC/bar 0.8020 0.8544 0.8510 0.8582
PR 0.7455 0.7217 0.7134 0.7544
PCH 0.3997 0.4531 0.3733 0.3938
PCTM 0.7432 0.6909 0.6113 0.6670
average 0.7213 0.7490 0.7298 0.7536

available on GitHub.6

A. Overlapping Area

Tables III and IV show the OAs of two transfer learning
methods evaluated on different features under six levels of
source-to-target data ratios (R). The bold number indicates the
highest OA for each feature under different Rs. For example,
the highest OA of NC for Method 1 (fine-tuning) is 0.8385
when R = 3.

From Table III, we observe that R = 3 gives the best
performance in most features and the best average performance
for Method 1. In contrast, in Table IV, although the best
performances for different features are quite divergent between
different Rs, Method 2 (multitask learning) seems to perform
better when R is smaller. The reason may be due to the
imbalance of source and target training data. Method 2 is
more affected by the imbalance of source and target training
data because its model is trained on both the source and
target training datasets at the same time. Overall, the results in
Tables III and IV indicate that Method 2 (multitask learning)
outperforms Method 1 (fine-tuning).

In Table V, we compare the performances of different
methods, including Baseline 1 (the model is trained on the
source training dataset), Baseline 2 (the model is trained on
the small target training dataset), Method 1 (fine-tuning with
R = 3), and Method 2 (multitask learning with R = 1).
Several observations can be drawn from the table. First,
Baseline 2, in which the model is trained on the small target

6 https://github.com/annahung31/jazz melody generation

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

343

https://github.com/annahung31/jazz_melody_generation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C3 C#
3 D
3

Eb
3 E3 F3 F#
3 G
3

A
b3 A
3

Bb
3 B3 C4 C#
4 D
4

Eb
4 E4 F4 F#
4 G
4

A
b4 A
4

Bb
4 B4 C5 C#
5 D
5

Eb
5 E5 F5 F#
5 G
5

A
b5 A
5

Bb
5 B5 C6 C#
6 D
6

Eb
6 E6 F6 F#
6 G
6

A
b6 A
6

Bb
6 B6

（
％
）

pitch

Ⅰ Ⅱ Ⅲ Ⅳ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
C3 C#
3 D
3

Eb
3 E3 F3 F#
3
G
3

A
b3 A
3

Bb
3 B3 C4 C#
4 D
4

Eb
4 E4 F4 F#
4
G
4

A
b4 A
4

Bb
4 B4 C5 C#
5 D
5

Eb
5 E5 F5 F#
5
G
5

A
b5 A
5

Bb
5 B5 C6 C#
6 D
6

Eb
6 E6 F6 F#
6
G
6

A
b6 A
6

Bb
6 B6

（
％
）

pitch

Ⅰ Ⅱ Ⅲ Ⅳ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C3 C#
3 D
3

Eb
3 E3 F3 F#
3
G
3

A
b3 A
3

Bb
3 B3 C4 C#
4 D
4

Eb
4 E4 F4 F#
4
G
4

A
b4 A
4

Bb
4 B4 C5 C#
5 D
5

Eb
5 E5 F5 F#
5
G
5

A
b5 A
5

Bb
5 B5 C6 C#
6 D
6

Eb
6 E6 F6 F#
6
G
6

A
b6 A
6

Bb
6 B6

（
％
）

pitch

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C3 C#
3
D
3

Eb
3 E3 F3 F#
3
G
3

A
b3 A
3

Bb
3 B3 C4 C#
4
D
4

Eb
4 E4 F4 F#
4
G
4

A
b4 A
4

Bb
4 B4 C5 C#
5
D
5

Eb
5 E5 F5 F#
5
G
5

A
b5 A
5

Bb
5 B5 C6 C#
6
D
6

Eb
6 E6 F6 F#
6
G
6

A
b6 A
6

Bb
6 B6

（
％
）

pitch

Ⅰ Ⅱ Ⅲ Ⅳ

Ⅰ Ⅱ Ⅲ Ⅳ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C3 C#
3 D
3

Eb
3 E3 F3 F#
3 G
3

A
b3 A
3

Bb
3 B3 C4 C#
4 D
4

Eb
4 E4 F4 F#
4 G
4

A
b4 A
4

Bb
4 B4 C5 C#
5 D
5

Eb
5 E5 F5 F#
5 G
5

A
b5 A
5

Bb
5 B5 C6 C#
6 D
6

Eb
6 E6 F6 F#
6 G
6

A
b6 A
6

Bb
6 B6

（
％
）

pitch

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

C3 C#
3 D
3

Eb
3 E3 F3 F#
3
G
3

A
b3 A
3

Bb
3 B3 C4 C#
4 D
4

Eb
4 E4 F4 F#
4
G
4

A
b4 A
4

Bb
4 B4 C5 C#
5 D
5

Eb
5 E5 F5 F#
5
G
5

A
b5 A
5

Bb
5 B5 C6 C#
6 D
6

Eb
6 E6 F6 F#
6
G
6

A
b6 A
6

Bb
6 B6

（
％
）

pitch

Ⅰ Ⅱ Ⅲ Ⅳ

Ⅰ Ⅱ Ⅲ Ⅳ

(a) (b) (c)

Fig. 2. Pitch histograms of (a) the source (TT) dataset (upper) and the target (CY+R) dataset (lower), (b) the melodies generated by Baseline 1 trained on
TT (upper) and Baseline 2 trained on CY+R (lower), and (c) the melodies generated by Method 1 with R = 3 (upper) and Method 2 with R = 1 (lower).

C C# D Eb E F F# G Ab A Bb B

Major � � � � � � �

Minor � � � � � � �

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C C# D Eb E F F# G Ab A Bb B

(%
)

pitch class

CY+R TT

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C C# D Eb E F F# G Ab A Bb B

(%
)

Pitch class

CY+R baseline : target method 2

(a) (b)

Fig. 3. (a) Upper: Pitch class histograms of the target (CY+R) and source (TT) datasets. Lower: the scales of C-Major and C-Minor; (b) Pitch class
histograms of the target dataset and the melodies generated by Baseline 2 and Method 2 (R = 1).

dataset, outperforms Baseline 1 whose model is trained on
the large source dataset. Second, Method 1 can improve the
model trained on the source dataset by fine-tuning it with a
small target dataset, but the improvement is not much. Third,
surprisingly, Method 1 is worse than Baseline 2, indicating that
instead of fine-tuning a model trained on the source dataset
with the target dataset, it is better to directly train the model
on the target dataset. This result is clearly not in line with
expectations and deserves in-depth study. Fourth, Method 2 is
superior to the other three methods in most features except
PCH and PCTM.

B. Pitch-related Analysis

In order to take a closer look to how these models manage
the pitches, basic pitch histogram and pitch class histogram
are drawn as Figs. 2 and 3, respectively.

Basic pitch histogram indicates the probability of presence
of every pitch from C3 to B6. The pitch range covers four
octaves, denoted as I, II, III, and IV, in Fig. 2. In Fig. 2(a),
we can see that most of the pitches in the target dataset fall
in octaves II and III, while most of the pitches in the source
dataset fall in octave III. In other words, Jazz music has a
wider range of pitches than generic music. In Fig. 2(b), the
melodies generated by baseline methods seem to lose the
diversity of pitch, in particular for Baseline 1, the pitches
of the generated melodies tend to accumulate in octave III.

For Baseline 2, although there are quite a few pitches of the
generated melodies in octave III, there are much more pitches
in octave II. In Fig. 2(a), it is obvious that the basic pitch
histogram of Method 2 is more similar to that of the target
training data than Method 1. In summary, the basic pitch
histogram of Method 2 is most similar to that of the target
training data.

Pitch class histogram shows how the scales are used in
melodies regardless of octaves. The lower part of Fig. 3(a)
shows the scales of C-Major and C-Minor. As mentioned in
Sec. III, the TT dataset contains both C-Major and C-Minor
scales. As a result, TT has higher probabilities in Eb and Bb, as
highlighted with the red box in Fig. 3(a). Fig. 3(b) compares
the pitch class histograms of the target CY+R dataset and
the melodies generate by Baseline 2 and Method 2. Although
Method 2 achieves a lower OA in PCH as shown in Table
V, we can see in Fig. 3(b) that Method 2 actually performs
better than Baseline 2 in many scales highlighted with the
green box. A possible reason is that the OA of PCH in Table
V is calculated in a sample-wise manner, but the PCH in Fig.
3(b) presents the overall pitch class distributions of the target
dataset and the melodies generated by the models. This means
that Method 2 learns the probability of the presence of a scale
in Jazz music, but does not mean that the combination of
pitches within each sample (i.e., a four-bar melody phrase)
generated by it conforms to the overall target distribution.

QCY
打字机文本
344

(a)

(b)

Fig. 4. Score of melodies generated by (a) Method 1, (b)Method 2.

TABLE VI
THE RESULTS OF THE SUBJECTIVE TEST.

CY+R Baseline 1
(source)

Baseline 2
(target)

Method 1
(R=3)

Method 2
(R=1)

Type I 3.5905 2.6286 2.7524 2.8095 2.8857
Type II 3.7744 2.3179 2.3282 2.6564 2.3538
Type III 3.8500 2.2750 2.4000 2.8500 2.5250

C. Subjective Test

In addition to the objective test, we also conducted a
subjective listening evaluation. We let the subjects listen
to two demo melodies from the CY+R dataset, and asked
them to rate five groups of four-bar melody phrases. Each
group contained five melody phrases, one from the CY+R
dataset, and the remaining four were generated by two
baselines, Method 1 with R = 3, and Method 2 with R = 1,
respectively. After listening to each test melody, the subjects
were asked to give a score in a five-point Likert scale
according to the degree of similarity between the test melody
and the demo melody. The subjects were also required to
provide information about their musical expertise. They could
choose the category that best fits them from

Type I: seldom listening to soft jazz,
Type II: a music lover, and listening to jazz (soft jazz)
sometimes, and
Type III: professional composer.

The results of the subjective test are shown in Table VI. 69
subjects participated in the test, of which 21 belonged to Type
I, 39 belonged to Type II, and 9 belonged to Type III. From
the results, the following observations can be drawn.
• Both Method 1 and Method 2 scored higher than the two

baselines.
• Method 2 got the highest score for Type I subjects.
• The subjects for Types II and III preferred the melodies

generated by Method 1 instead of Method 2.
The reason for the difference between objective and sub-

jective results might be that Type II and Type III subjects are
more aware of the existence of some jazz-related techniques.
When any such pattern appears in a melody, subjects tend to
consider it as more like real data. For example, Fig. 4 shows

the score of melodies generated by Method 1 and Method 2 in
one of the subjective test rounds. In the third bar of Fig.4(a),
there seems to be a ”chromatic enclosures”, which is a part
of jazz vocabulary. As a result, (a) gets a higher score of 3.44
than (b), which is 1.78. Maybe we should have adopted an
algorithm to find such musical patterns and include them in
the evaluation metrics.

VII. CONCLUSIONS

In this paper, we proposed using a recurrent VAE to ran-
domly generate a jazz melody. We compared two methods of
utilizing a big source dataset for transfer learning with a small
target dataset and investigated the influence of the source-to-
target data ratio. The overlapping areas computed based on
the distributions of different pitch-related and rhythm-related
features demonstrates that the multitask learning-based method
(Method 2 in this paper) is slightly better than the fine-tuning-
based method (Method 1) and the baseline methods that train
the model on either the source dataset or the target dataset.
On the other hand, the subjective test shows that the subjects
who sometimes listen to soft jazz or are professional about
composition think the melodies generated by Method 1 are
better than those generated by Method 2. In the future, we will
investigate more advanced methods for generating melodies.
We also plan to develop better objective metrics for evaluation.

ACKNOWLEDGMENT

This work was supported in part by the Ministry of Science
and Technology of Taiwan under Grant: MOST 105-2221-
E001-012-MY3.

REFERENCES

[1] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “MidiNet: A convolutional
generative adversarial network for symbolic-domain music generation,”
Proc. Int. Soc. Music Information Retrieval Conf., 2017.

[2] E. Waite, D. Eck, A. Roberts, and D. Abolafia, “Project Magenta:
Generating long-term structure in songs and stories,” [Online] https:
//magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn/, 2016.

[3] N. Trieu and R. Keller, “JazzGAN: Improvising with generative adver-
sarial networks,” Proc. Int. Workshop on Musical Metacreation, 2018.

[4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Proc. Advances in Neural Information Processing Systems, pp. 2672–
2680, 2014.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

345

https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn/
https://magenta.tensorflow.org/2016/07/15/lookback-rnn-attention-rnn/

[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes”, arXiv
preprint arXiv:1312.6114, 2013.

[6] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang, “MuseGAN:
Symbolic-domain music generation and accompaniment with multi-track
sequential generative adversarial networks,” Proc. AAAI Conf. Artificial
Intelligence, 2018.

[7] A. Roberts, J. Engel, C. Raffel, C.Hawthorne and D. Eck, “A hierarchical
latent vector model for learning long-term structure in music,” Proc. Int.
Conf. Machine Learning, 2018,

[8] J. D. Fernández and F. Vico, “AI methods in algorithmic composition: A
comprehensive survey,” J. Artificial Intelligence Research, vol. 48, no. 1,
pp. 513–582, 2013.

[9] H. Chu, R. Urtasun, and S. Fidler, “Song from PI: A musically plausible
network for pop music generation,” Proc. Int. Conf. Learning Represen-
tations, Workshop Track, 2017.

[10] B. L. Sturm, J. Felipe Santos, O. Ben-Tal, and I. Korshunova, “Music
transcription modelling and composition using deep learning, ” arXiv
preprint arXiv:1604.08723, 2016.

[11] G. Hadjeres, F. Pachet and F. Nielsen, “DeepBach: A steerable model
for Bach chorales generation, Proc. Int. Conf. Machine Learning, 2017.

[12] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans.
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[13] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and trans-
ferring mid-level image representations using convolutional neural net-
works,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.
17171724, 2014.

[14] M.-Y. Huh, P. Agrawal and A. A. Efros, “What makes ImageNet good
for transfer learning?,” arXiv preprint arXiv:1608.08614, 2016.

[15] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[16] M. A. Hasegawa-Johnson et al., “ASR for under-resourced languages
from probabilistic transcription,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 25, no. 1, pp. 50-63, 2017.

[17] L.-C. Yang and A. Lerch, “On the evaluation of generative models in
music,” Neural Computing and Applications, pp. 1–12, 2018.

[18] B.W.: Density estimation for statistics and data analysis, vol. 26. CRC
press,1986.

[19] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Transfer learning for
music classification and regression tasks,” Proc. Int. Society of Music
Information Retrieval Conf., 2017.

[20] H.-Y. Lee, “Transfer learning,” National Taiwan University, class
lecture, [Online] http://speech.ee.ntu.edu.tw/∼tlkagk/courses/ML 2017/
Lecture/transfer.pdf, 2017.

[21] M. E. P. Davies, K. Yoshii, and M. Goto, “Transfer learning in MIR:
sharing learned latent representations for music audio classification and
similarity,” Proc. Int. Society of Music Information Retrieval Conf., 2013.

[22] J. Park, J. Lee, J. Park, J. W. Ha, J. Nam, “Representation learning
of music using artist labels,” Proc. Int. Society of Music Information
Retrieval Conf., 2018.

[23] W.-T. Lu and L. Su, “Vocal melody extraction with semantic segmenta-
tion and audio-symbolic domain transfer learning,” Proc. Int. Society of
Music Information Retrieval Conf., 2018.

[24] Y.-J. Luo and L. Su, “Learning domain-adaptive latent representations of
music signals using variational autoencoders,” Proc. Int. Society of Music
Information Retrieval Conf., 2018.

[25] H.-W. Dong, W.-Y. Hsiao, and Yi-Hsuan Yang, “Pypianoroll: Open
source Python package for handling multitrack pianoroll,” Proc. Int.
Society of Music Information Retrieval Conf., Late-breaking and demo
paper, 2018.

[26] H.-M. Liu, M.-H. Wu, and Y.-H. Yang, “Lead sheet generation and
arrangement via a hybrid generative model,” Proc. Int. Society of Music
Information Retrieval Conf., Late-breaking and demo paper, 2018.

[27] T. Fujishima, “Realtime chord recognition of musical sound: A system
using common Lisp,” Proc. Int. Computer Music Conf., pp. 464–467,
1999.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

346

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/transfer.pdf
http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/transfer.pdf

