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Abstract—Speaker verification in a multi-speaker environment
is an emerging research topic. Speaker clustering, that separates
multiple speakers, can be effective if a predetermined threshold
or the number of speakers present in a multi-speaker utterance
is given. However, the problem in practice does not provide
the leverage for either of the factors. This work proposes to
handle such a problem by introducing a penalty distance factor
in the pipeline of traditional clustering techniques. The proposed
framework first uses traditional clustering techniques to form
speaker clusters for a given number of speakers. We then
compute the penalty distance based on Bayesian information
criterion that is used for merging alike clusters in a multi-
speaker utterance. The studies are conducted on speakers in the
wild (SITW) and recent NIST SRE 2018 databases that contain
multi-speaker conversational speech in noisy environments. The
results show the effectiveness of the proposed penalty distance
based refinement in such a scenario.

I. INTRODUCTION

Speaker verification (SV) refers to authenticate a speaker’s

identity claim using voice samples [1], [2]. Traditional SV

approaches focus on tasks in which the test utterance contains

speech from a single speaker. However, there can be an interest

of application towards detecting a speaker in a multi-speaker

environment [3]. In the recent years, SV in a multi-speaker

noisy scenario has gained attention in the face of increasing

demand from real-world applications [4]–[7]. This problem

statement is closely associated with speaker diarization that

deals with identifying who speaks when [8], [9], but with a

different end goal, which is to detect the presence of the target

speaker. In this work, we focus on such a scenario, where the

speaker’s identify has to be verified from multi-speaker speech.

It was reported that the false alarm rate is nearly double

when there are two speakers in a test utterance [3]. The speak-

ers in the wild database (SITW) was introduced to investigate

such challenges in a multi-speaker environment [10]. It is

collected in real-world scenarios that are mostly uncontrolled

and contains background noise, which is depicted by the name

of the database. The multi-speaker test scenario contains a

single speaker for training and one or more speakers during

testing [10], [11]. A similar task of SV with multi-speaker

environment is also included in the recent NIST SRE 2018

challenge [12]. All these recent challenge trends show the sig-

nificance of investigating SV in a multi-speaker environment.

Traditional speaker diarization systems follow the modules

of voice activity detection (VAD), segmentation and speaker

clustering in a pipeline [13]. In the recent DIHARD diarization

challenge, the latest techniques are investigated with reference

to these modules by different research groups [14]–[17]. For

SV in a multi-speaker condition, the works of [18], [19]

in SITW challenge evaluation showed that diarization can

be useful for multi-speaker test condition. The result under

such scenario is reported assuming that a specific number of

speakers are present in the test trials. However, the number of

speakers in a real-world application may vary. Therefore, there

is a need to have different number of final speaker clusters

from a multi-speaker test trial.

Agglomerative hierarchical clustering (AHC) is the most

widely used method for speaker clustering [20]–[22]. This

method considers each divided segment as a cluster and then

the nearest clusters are combined together to form a new

cluster. The process of merging the clusters involves a stopping

criterion, which is based on the number of speakers in the

segment or some threshold [23]. However, the estimation of

a predetermined threshold is difficult for a SV task with

multi-speaker speech. Furthermore, a deviation in it may

lead to clustering error that can propagate in subsequent

iterations [24]. Various works on diarization show that speaker

linking is useful for improving the performance [25]–[27]. In

the problem at hand, as the number of speakers is unknown

and varies across the test trials, a clustering refinement can

be useful. The penalty distance that is derived from Bayesian

information criterion (BIC) has been found to be effective to

estimate the speaker change points [28], [29]. We believe that

the penalty distance can be used to refine the speaker clusters

to find if the clusters belong to same or different speakers.

In this work, we propose a framework for SV in a multi-

speaker noisy environment. A robust VAD is designed with

a deep neural network (DNN) setup, followed by speech seg-

mentation. The AHC is considered for speaker clustering using

the segmented speech. The penalty distance based refinement

is then performed for each multi-speaker test trial to correctly

find the number of speakers. The rest of the SV framework

follows the x-vector based system architecture to authenticate

a trial [30]. We use the multi-speaker test conditions of SITW

and NIST SRE 2018 corpora for the studies. The contribution

of this work lies in the proposal of a framework using a penalty

distance to refine the speaker clusters for SV in a multi-speaker

environment.

The remainder of the paper is organized as follows. Sec-

tion II presents the details of penalty distance based refine-

ment for speaker clustering. Section III describes the pro-

posed multi-speaker SV framework with speaker clustering
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Fig. 1. Block diagram of the proposed framework for multi-speaker speaker verification with speaker clustering.

refinement. The details of the experiments is mentioned in

Section IV. Section V reports the results and discussions.

Finally, the paper is concluded in Section VI.

II. SPEAKER CLUSTERING WITH PENALTY DISTANCE

As discussed in the introduction, the number of speakers

in a multi-speaker test trial is unknown. The classical and

popular clustering techniques like AHC requires the number

of speakers in the utterance or a predetermined threshold for

convergence. However, previous studies show that it is safer to

use the number of speakers to minimize the clustering error

during the merging process of segments as computation of

threshold is difficult [24]. In the current problem at hand,

considering a fixed number of speakers for all the multi-

speaker test trial may lead to serious errors. Therefore, we

introduce penalty distance for clustering refinement.

The BIC is proposed for the task of speaker change detec-

tion in [28]. It is represented mathematically as the following,

BIC = N log|Σ| −N1log|Σ1| −N2log|Σ2| − λP (1)

where N1, N2 denote the number of frames for the two

given speech segments and N stands for frame number of the

merged segment. Considering all the segments follow Gaus-

sian distribution, Σ1, Σ2 and Σ represent their corresponding

covariance, respectively. The λ is a penalty factor and penalty

P for feature dimension d is given by,

P =
1

2

(
d+

1

2
d(d+ 1)

)
logN (2)

The merging of two segments depends on the BIC value.

When the obtained BIC value is negative, the segments are

merged, otherwise they are unaltered. For the sake of simplic-

ity, many studies consider the penalty factor λ = 1. However,

this factor can be tuned for different environments [28].

Another way of determining the penalty factor is computing

it when, BIC = 0. We refer the penalty factor as penalty

distance λ0 for such a condition. From Equation (1) and (2)

and making BIC = 0, we obtain the penalty distance λ0 as,

λ0 =
4(N log |Σ| −N1log|Σ1| −N2log|Σ2|)

(d2 + 3d)logN
(3)

This kind of penalty distance has been investigated for

speaker change detection problem to obtain the speaker change

points [29]. The larger the value of λ0, the larger is the possi-

bility of speaker change point between two speech segments.

In this current work, the penalty distance is applied on the

speaker clusters obtained after AHC to judge whether the

clusters belong to same or different speakers. The speaker

cluster refinement using this penalty distance is expected to

be effective in the pipeline of verifying a multi-speaker test

trial, where the number of speakers is unknown. Next, we

discuss the integration of this module to the SV framework

with multi-speaker speech.

III. MULTI-SPEAKER SPEAKER VERIFICATION WITH

SPEAKER CLUSTERING

The SV framework with multi-speaker testing in noisy

environment requires three major components. The first one

deals with finding the speech regions from the utterance, which

has to be accurate so that it does not transfer the errors to the

speaker clustering later. The importance of having a robust

VAD in such scenarios is showed in [31]. In this regard, a

robust DNN based VAD is implemented to handle this by

using several hours of background data. The VAD is followed

by segmentation of the speech. The studies of [32] showed

that 0.5 to 1 second is the optimal length of a segment for

speaker clustering as there is a very less chance of getting a

large number of speaker change points in that small duration.

The segmentation is followed by AHC to merge all similar

segments for a given number of speakers in the utterance. To

refine the final speaker clusters obtained through the clustering

technique, the penalty distance is applied to merge alike

clusters. The merging process compares penalty distance to a

threshold. However, this threshold is easier to calculate using a

development set, rather than the conventional AHC approach,

which calculates the threshold from the test speech segment.
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TABLE I
SUMMARY OF SITW AND SRE 2018 VAST CORPORA.

Database Subset
# Utterances # Total

Enroll Test Trials

SITW core-multi Dev 696 1,287 636,918

SITW core-multi Eval 1,202 2,275 2,010,683

SRE 2018 VAST Dev 10 27 270

SRE 2018 VAST Eval 101 315 31,815

Additionally, at this stage the chance of error is less as the

number of final clusters is very small compared to the original

0.5 second segments of a multi-speaker test trial.

The SV systems have advanced a lot in recent decade from

factor analysis approaches to the deep learning methods [30],

[33]–[37]. In this work, we have used standard x-vector

based architecture for speaker modeling [30]. The x-vectors

corresponding to the final number of speaker clusters after

penalty distance based refinement from multi-speaker speech

segments are extracted. We consider that each cluster largely

represents one speaker in the multi-speaker speech. Their

likelihood with respect to the target speaker model is then

computed and the maximum likelihood score among them is

finally considered for decision. Figure 1 shows the overview

of the proposed framework for SV in a multi-speaker noisy

environment. Next, we describe the details of SV system with

multi-speaker speech.

IV. EXPERIMENTS

This section discusses the details of the developed SV

system. The database, robust VAD along with experimental

setup are described in the following subsections.

A. Database

In this work, the SITW and NIST SRE 2018 corpora are

considered as they have multi-speaker test condition for SV

studies. The SITW corpus contains two subsets, development

and evaluation set that contain 119 and 180 speakers, respec-

tively, totaling a population of 299 speakers [10]. The speech

examples of SITW database are collected in various practical

noisy environments. It contains a core-multi evaluation con-

dition that refers to single speaker for enrollment and one or

more speakers in an utterance during testing. The amount of

data for enrollment varies from 6 seconds to 180 seconds,

whereas that for multi-speaker testing varies from 6 seconds

to 10 minutes. We consider this condition for validating our

ideas.

The NIST SRE 2018 database contains a subset that deals

with audio from video (afV) and is referred to as video anno-

tation for speech technology (VAST) corpus [38]. YouTube

videos in various scenarios are used to extract these afV

examples of the VAST corpus and they may contain multiple

speakers. The speaker time marks for the enrollment utterances

are provided. However, no information is provided for the test

trials that makes it as the task of SV in a multi-speaker envi-

ronment. The development set of this VAST corpus contains a

small population of 10 speakers data, whereas the evaluation

set is comparatively larger having data from 101 speakers.

Table I shows the detailed composition of the SITW and VAST

database used in the study.

B. Experimental setup

The databases considered for the study are collected in

various noisy environments. Therefore, an effective method

is required to identify the speech regions. In this regard, we

implemented a robust VAD using a DNN architecture. The

DNN is trained with VoxCeleb1, MUSAN and RIRS noise

datasets [39]–[42]. The 39-dimensional (13-base+13-∆+13-

∆∆) mel frequency cepstral coefficient (MFCC) features and

3-dimensional zero crossing rate features are extracted from

these databases to learn the speech and non-speech models

with the DNN.

The 30-dimensional MFCC features are extracted for the

speech regions obtained after robust VAD for every short-term

processed frame of 25 ms. We note that the delta and double-

delta coefficients are not considered in this case. For the multi-

speaker test trials, we segment the speech regions into 0.5

second duration segments for speaker clustering followed by

penalty distance based refinement. We obtain the threshold for

speaker cluster refinement on the development set of SITW

database.

The x-vector system used in this work follows the archi-

tecture in [30]. We used the wideband 16 kHz data from

VoxCeleb1 and VoxCeleb2 corpora to train the x-vector ex-

tractor [39], [40]. The 512-dimensional x-vectors are then

extracted with this extractor for every utterance in the en-

rollment set and each final speaker cluster obtained from

the multi-speaker test trials. The back-end of the system

considers a 150-dimensional linear discriminant analysis to

reduce the dimension of the x-vectors followed by probabilistic

linear discriminant analysis classifier to compute the likelihood

scores against the target speakers. Finally, we consider the

maximum score obtained from the speaker clusters of a multi-

speaker trial as the decision to report the system performance.

The performance of the studies conducted in this work are

reported in terms of equal error rate (EER), minimum cost

(minC) and actual cost (actC) as per the protocols mentioned

in the evaluation plan of the respective database [10], [38].

The likelihood scores are calibrated with Bosaris1 toolkit to

minimize the actual cost [43]. For the problem at hand, there

is no ground truth available for the speaker change points and

time marks in the test trials. Therefore, we cannot compute

the performance of diarization in terms of measures like

diarization error rate for the AHC output.

V. RESULTS AND DISCUSSIONS

This section describes the experimental results and analysis

associated with SV in a multi-speaker environment. We first

consider the core-multi condition of SITW database for the

studies. A baseline system with x-vector modeling is initially

developed without conducting any speaker clustering on multi-

speaker test trials. Then we apply traditional AHC based

1https://sites.google.com/site/bosaristoolkit/
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Fig. 2. DET plots for different frameworks on SITW database (a) Development Set (b) Evaluation Set.

TABLE II
PERFORMANCE FOR MULTI-SPEAKER TEST CONDITION ON SITW

DATABASE.

System Subset EER minC actC

Baseline
Dev 5.76 0.390 0.393
Eval 6.00 0.436 0.436

# Speaker Cluster = 2

Traditional AHC
Dev 6.02 0.405 0.434
Eval 6.53 0.433 0.455

with Penalty Distance
Dev 5.62 0.376 0.386
Eval 5.86 0.401 0.401

# Speaker Cluster = 3

Traditional AHC
Dev 7.09 0.405 0.435
Eval 7.69 0.445 0.460

with Penalty Distance
Dev 5.17 0.370 0.381
Eval 5.77 0.406 0.406

clustering technique to obtain speaker clusters from the test

trials and follow the SV pipeline. In our experiments, we

consider there are two and three speakers in the test trials

for two different studies of clustering. This is based on the

previous studies reported on the SITW database by different

groups that showed results under assumption of different

number of speakers [18], [19]. Finally, the proposed frame-

work with speaker cluster refinement using penalty distance is

implemented on those two conditions for comparison.

Table II reports the results for comparison of different SV

frameworks in multi-speaker environment on SITW database.

It can be observed that since the number of speakers in

the test trials is unknown, assuming two or three speakers

across all the trials does not help to achieve an improved

result by performing speaker clustering in a traditional manner.

Some of the trials can have two or more speakers and some

trials may consist only a single speaker. In such cases, the

amount of test data are incorrectly distributed into the clusters

for verification in a multi-speaker environment. This in turn

can lead to a decrease in system performance. However, on

introducing penalty distance for speaker cluster refinement,

gains are achieved as can be observed from Table II. The

trials having fewer number of speakers than that assumed for

clustering are benefited due to the refinement based on penalty

distance that reflects in the result for both the conditions.

Furthermore, we note that the performance of the proposed

framework is similar for assumption of speaker clusters two

and three on comparing the different performance metrics.

This shows a better stability and convergence with the penalty

distance based refinement. Figure 2 shows the detection error

tradeoff (DET) curves for different frameworks on SITW

database [44]. It illustrates the gain achieved by the proposed

penalty distance based cluster refinement method over the

traditional way of clustering.

We then consider the VAST subset of recent NIST SRE

2018 database for SV in multi-speaker environment studies. It

is to be noted that the evaluation protocols of SITW and VAST

database are different to compute the associated cost [10],

[38]. The prior target probability is 0.01 and 0.05 for SITW

and VAST database, respectively. However, the miss and false

alarm probabilities are 1.0 for both corpora. Table III shows the

comparison of performance for different system frameworks

for VAST database using its evaluation protocol. The VAST

corpus also shows similar trend like previous study on SITW

database. The performance of the proposed framework shows

improved results compared to the traditional clustering that

depicts the benefit gained with penalty distance based cluster

refinement. We note that there are very few trials for the

development set of VAST database. Therefore, the studies

on that small subset may not be that conclusive. However,
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TABLE III
PERFORMANCE FOR MULTI-SPEAKER TEST CONDITION ON NIST SRE

2018 VAST SUBSET.

System Subset EER minC actC

Baseline
Dev 11.11 0.383 0.527
Eval 15.96 0.547 0.641

# Speaker Cluster = 2

Traditional AHC
Dev 18.52 0.481 0.519
Eval 15.87 0.550 0.647

with Penalty Distance
Dev 5.35 0.383 0.490
Eval 14.29 0.518 0.591

# Speaker Cluster = 3

Traditional AHC
Dev 18.52 0.481 0.519
Eval 14.90 0.612 0.703

with Penalty Distance
Dev 7.41 0.370 0.453
Eval 14.21 0.515 0.586

the benefit of the proposed framework can be observed by

the studies on SITW and evaluation set of VAST database.

The initial version of the system developed using penalty

distance based speaker cluster refinement for VAST subset

of NIST SRE 2018 is also submitted as a subsystem of I4U

consortium [45].

VI. CONCLUSIONS

We study a framework for SV with multi-speaker speech by

using penalty distance for the refinement of speaker clusters.

This penalty distance is derived from BIC that is applied on

top of the widely used AHC based speaker clustering method.

The proposed framework with introduction of penalty distance

is evaluated on SITW and recent NIST SRE 2018 VAST

database. We have used x-vector system for the experimental

studies. The results reveal that the proposed framework is able

to work effectively for SV in a multi-speaker environment

on comparing to the results obtained without penalty distance

based refinement and baseline framework.
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