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Abstract 
Speech loss, including frequency loss and packet loss, can lead 
to significant speech distortion in many Internet-based speech 
communication services. In this study, a generative adversarial 
networks (GANs) structure, which takes deep convolutional 
neural networks (CNN) as the generator and discriminator 
components, is adopted as a general framework for speech loss 
compensation. Network settings are modified for real-time 
communications. A set of experiments are conducted to 
evaluate the performance of the GANs-based framework for 
both bandwidth expansion (BWE) and packet loss concealment 
(PLC) at several simulated loss conditions. Experimental 
results demonstrate that the proposed system achieves better 
performance, with respective to 4 objective metrics, in both 
BWE and PLC compared to the baseline systems. 

Index Terms: Speech loss compensation, bandwidth extension, 
packet loss concealment, generative adversarial networks. 

1. Introduction 
Speech loss, from the signal transmission point of view, could 
happen in either time domain or frequency domain. The time 
domain loss happens mostly in network congestion situation, 
where the delay and jitter during speech packet transmission in 
a “best effort” packet-switched network can result in the packet 
loss problem [1]. In frequency domain, speech loss happens 
when recording setup varies [2], e.g., resampling form 16 kHz 
to 8 kHz will erase the higher band frequency components, 
band-pass filtering will kill the components outside the 
passband, etc.    

With the arrival of the 5th generation (5G) mobile 
networks, the number of devices connected to the network will 
be huge and different speech communication channels, e.g., 
voice-over-IP (VoIP), voice-over-long-term evolution 
(VoLTE), WiFi, Bluetooth, etc. might share the same network 
[3-6]. The effective bandwidth of speech will vary significantly 
across devices and channels. At the same time, network 
congestion might be more possible due to the increasing 
demand of communication among huge number of devices.  

Over the past decades, many techniques have been 
developed for speech bandwidth extension (BWE) and packet 
loss concealment (PLC). Conventional approaches (or shallow 
models) like Gaussian mixture models (GMM), hidden Markov 
model (HMM), linear prediction analysis and etc. [7-10] have 
been implemented for BWE or PLC. Besides, many standard 
codecs such as AMR-WB and Opus [11, 12] embrace the BWE 
and PLC algorithms. Recently, motivated by the success of 
deep learning techniques in speech recognition and speech 
separation [13, 14], many researchers have applied deep neural 
networks (DNN) to deal with the frequency and/or packet loss 
problems [15-17]. In [15, 16], BWE was achieved with a DNN, 

in which a mapping mechanism could be learned and the 
wideband spectra was reconstructed from the narrowband ones. 
Results showed that DNN outperforms GMM over objective 
measures and automatic speech recognition (ASR) accuracy. In 
[17], a similar DNN-based architecture was adopted to PLC for 
digital speech transmission. The result showed that DNN 
outperformed HMMs and AMR-WB algorithm with better 
speech quality and higher ASR accuracy. 

Generative adversarial networks (GANs), trained in an 
adversarial way between two networks (i.e., the generator G 
and the discriminator D), have been implemented in image 
synthesis with significant performance improvement [18,19]. 
Li et al. [20] proposed a GANs-based system, in which both G 
and D comprised of DNNs, for BWE with comparable 
performance to the AMR-WB codec. GANs with G and D 
comprised of deep convolutional networks have also been 
successfully implemented in speech enhancement (SE) [21], 
audio synthesis [22] and BWE [23]. 

Although favorable performances on BWE and/or PLC 
have been achieved by different neural networks-based systems 
as abovementioned, there still lacks of a systemic investigation 
on the effectiveness of a general framework to tackle SE, BWE 
and PLC, which could happen simultaneously in speech 
communication. This paper presents a study of such a general 
framework. The system takes a similar GANs architecture 
proposed in [21]. Only its effectiveness on BWE and PLC are 
investigated in this study since it has already been demonstrated 
successful for SE in [21]. Nevertheless, in consideration of real-
time speech compensation, the GANs structure was modified to 
accept shorter waveform chunks (200ms) as network input. A 
set of experiments were conducted to evaluate the system 
performance. Results show that the GANs-based framework 
can obtain comparable or better perceptual quality and 
intelligibility for both BWE and PLC than two DNN-based 
baselines. 

2. GANs-based Speech Loss Compensation 

2.1. The generative adversarial networks 

Generative adversarial networks (GANs) were proposed by 
Goodfellow et al. [24] in 2014, and have achieved significant 
success in speech and image processing ever since. Given ~ݕ௬ (i.e., ݕ follows probability distribution function ௬) the 
target data to be generated from the networks, ~ݖ௭ the noise 
data with known distribution ௭ to be input to the network, the 
objective of GANs is to generate a new data ̂ݖ from z such that ̂~ݖ௬. To do so, a generator network (G) and a discriminator 
network (D) are constructed and the networks optimization is 
done through a minimax two-player game played between G 
and D. G is trained to learn a mapping function ݖ →  such to ,ݖ̂
fool D as well as possible, and D is trained to classify ݕ as real  
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and  ̂ݖ as fake. Because of the weak guidance in the vanilla 
generative model, extra conditional information ݕ  (e.g., the 
observed speech/image data in speech enhancement and image 
translation) can be adopted to help the training of GANs, as 
described in [21, 25]. Thus, the adversarial training of the whole 
network can be formulated as minீ max ܸீ ேሺܦ,ܩሻ = ॱ௬,	௬~ሾlog ܲሺݕ, +ॱ௬~ൣlog൫1							 ሻሿݕ − ܲሺ̂ݖ,  ሻ൯൧   (1)ݕ

Recently, Pascual et al. [21] proposed a GANs-based 
speech enhancement system, i.e., the least square GAN 
(LSGAN) [26] with ܮଵ loss. In [21], instead of using Jensen-
Shannon divergence as in (1), least square error was adopted for 
the optimization. Meanwhile, the prior knowledge of ݕ in ܮଵ 
loss was adopted to better guide the training of G, i.e.,  minீ ܸௌீேሺܩሻ = 12ॱ௬~ሾሺ ܲሺ̂ݖ, ሻݕ − 1ሻଶሿ + ݖ̂‖ߣ −  ଵ‖ݕ

(2) 

where λ is set to be 100 as in [27]. And the training of D is given 
by min ܸௌீேሺܦሻ =12ॱ௬~ ቂ൫ ܲሺ̂ݖ, ଵଶ	+																			 ሻ൯ଶቃݕ ॱ௬,௬~ሾሺ ܲሺݕ, ሻݕ − 1ሻଶሿ  (3) 

2.2. Framework for GAN-based speech loss compensation  

The framework in this study is modified from the GANs 
structure proposed in [21]. As shown in Fig. 1, the G network 
is structured similarly to an auto-encoder structure, which 
consists of an encoder and a decoder. The encoder contains 10 
convolutional layers with variable depths (16-32-32-64-64-
128-128-256-256-512). To simulate the shorter network input 
(200ms) in speech communication, the fixed strides (2 in [21]) 
are modified to variable (2-2-1-2-1-2-1-2-1-2). The decoder 
contains 11 deconvolutional layers almost symmetric to the 
encoder except for the last output layer.  The D network consists 
of an encoder, which is the same as the one in G, and an 
activation layer as well. 

To train the networks, the impaired speech chunks (3200ms 
length per chunk and 1600ms overlap) are fed into the encoder 
of the G network. The encoding output ݕ , concatenated with 
noise vector ݖ , serves as the input to the decoder. Skip 
connections scheme as in [28] is also adopted in G to improve 
its performance by passing more useful details from the 
convolutional layers to the corresponding deconvolutional 
layers. The output of G and the unimpaired speech, i.e., the 
compensated speech ̂ݖ and ݕ,  once again concatenated with the 
corresponding impaired speech ݕ , is fed into the network D for 
computing the probabilities ܲሺ̂ݖ, ,ݕሻ and ܲሺݕ  ,as in (3)	ሻݕ
the former is transmitted in turn to G to guide G’s training. 

3. Experiments 

3.1. Dataset and preprocessing 

Experiments were carried out to evaluate the effectiveness of 
the proposed GANs-based speech loss compensation system for 
both BWE and PLC cases. An open access English speech 
databased designed for evaluating speech enhancement 
methods [29] was adopted in this study. The database contains 
parallel clean and noisy speech dataset, in which noisy data is 
generated from the clean speech by adding different noises. 

 
Figure 1: Diagram of the adversarial training in the GANs-
based speech loss compensation framework. 

Each dataset contains a training set (23075 utterances 
recorded form 56 native English speakers) and a test set (824 
utterances recorded form 2 native English speakers). In this 
study, only the clean dataset was used to generate the training 
and test data for the experiments. The original data are with 48 
kHz sampling rate and were downsampled to 16 kHz in the 
experiments. 

For the BWE experiments, the training data was randomly 
divided into 4 subsets, 3 of them were passed through low-pass 
filters with cut-off frequencies at 1.5 kHz, 2.5 kHz and 3.5 kHz, 
respectively, to generate the high frequency loss data. Similarly, 
the test data were randomly divided into 5 subsets, 4 of them 
were low-pass filtered with cut-off frequencies at 1kHz, 1.5 
kHz, 2.5 kHz and 3.5 kHz, respectively. 

For the PLC experiments, the training data were randomly 
divided into 5 subsets and packet loss rates of 0, 10, 20, 30 and 
40 percent were simulated to generate packet loss speech with 
the 5 subsets, respectively. Similarly, the packet loss speech 
data for test were generated from the test data with 6 different 
packet loss rates of 0, 10, 20, 30, 40 and 50 percent, respectively.  

A packet in the experiments contained a 20ms speech frame 
and the lost packets were simulated using opus codec demo 
which is available at https://github.com/xiph/opus. 

3.2. Feature extraction 

As mentioned in Section 2.2, for training, all signals were 
segmented into a sequence of 3200ms chunks with 50% 
overlap. As for test, the utterances were also segmented into 
chunks of 3200ms without overlap. For real-time consideration, 
the 3200ms chunks can be constructed by concatenating the 
current frame (20ms) with the previous 9 frames in the buffer. 

3.3. Network setting 

As mentioned in section 2.2, the network G is an encoder-
decoder convolutional topology containing totally 20 layers, 
each with a fixed filter size of 31 and a variable stride. Layer 
weights and bias for the GANs were initialized as in [21]. 
Activation functions used in G were parametric rectified linear 
units (PReLUs) in convolutional layers and the hyperbolic 
tangent (tanh) for the last output layer. Activation functions for 
D were LeakyReLU nonlinearities with α=0.3. Besides, in order 
to accelerate the training and avoid overfitting, virtual batch 
normalization [30] was adopted in the GANs. The GANs-based 
compensation framework was trained for 50 epochs with a 
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learning rate of 0.0002 and the gradient descent optimizer was 
the Adam [31]. The settings are the same for both BWE and 
PLC cases. The trained model size of G in GANs is about 
400M, while the baseline model size is just about 200M. 
However, GANs perform BWE or PLC in an end-to-end 
manner without extra signal pre-processing like short time 
Fourier transform and phase problem. 

3.4. Baseline systems 

For comparison, DNN-based speech compensation systems 
were adopted as baselines. The DNN has 3 hidden layers with 
2048 nodes in each layer. Layer weights and bias for DNN were 
initialized as in [15]. Activation functions used in each layer 
were all “ReLu”. For both BWE and PLC experiments, DNN 
was trained for 100 epochs with a learning rate of 0.001 and an 
Adm optimizer. To smooth the loss function curve, learning rate 
decreased in exponential decay rate (initialized to 0.9) per 
epoch. Batch normalization was applied to stabilize the network 
training.  

The features to the DNN were the same as in [15], each 
signal was segmented into a sequence of frames (20ms frame 
length and 10ms overlap). To each frame, 512-point short-time 

Fourier transform (STFT) was implemented and the log-
magnitude of the first 257 frequency components was 
calculated to compose a 257-dimensional vector. To the ݐ௧ 
frame, the input to the network was a 9*257-dimensional 
feature vector consisting of 9 such 257-dimentional vectors 
computed from frames t-4 ~ t+4. 

In test, the output from the DNN, i.e., the compensated log-
magnitude spectra, was used to reconstruct the enhanced speech 
with the corresponding phase information extracted from the 
corresponding impaired speech. The baseline is named DNN1 
in the experiments. As in [15], another baseline, named DNN2, 
in which the enhanced speech was reconstructed with the DNN 
log-magnitude spectra and the ideal phase from the unimpaired 
speech. 

4. Results and Discussion 
Figure 2 gives an example of BWE results. It seems that the two 
DNN based systems recover more high frequency components 
than the GANs. However, the spectrogram reconstructed by 
GANs is more closed to the original one than those by DNNs, 
especially at the frequencies lower than about 4 kHz where the 
majority of speech power resides. Besides, as to be elaborated 

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d)

(e) (e) 

Figure 3: Waveforms for packet lost and compensated 
utterances. (a) original, (b) speech with packet loss rate 
of 30%, (c-e) compensated by DNN1, DNN2 and GANs. 

Figure 2: Spectrograms for high frequency lost and 
compensated utterances. (a) original, (b) high frequency 
loss with cut-off frequency at 2.5kHz, (c-e) compensated 
by DNN1, DNN2 and GANs.
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in Table 1, the high-frequency information is not so clear as the 
ground truth, which seem not to help improve the speech quality 
obviously. Similarly, an example of PLC results is 
demonstrated in Fig. 3. It can be observed clearly that the 
waveform reconstructed by the GANs is more closed to the 
original one than those by DNNs. 

Table 1 and 2 gives the overall results of PESQ (ranging -
0.5 to 4.5), LSD, STOI (ranging from 0 to 1) and SNR [32-35] 
for the impaired speech and the compensated outputs from the 
three systems in BWE and PLC cases, respectively. In both 
tables, UP, DNN1, DNN2 and GANs stand for the unprocessed 
speech, speech processed by the two baselines DNN1 and 
DNN2, and by the proposed GANs system, respectively. SEEN 
means that the cut-off frequencies or the packet loss rates of the 
test data are the same as those in the training data while 
UNSEEN means that the cut-off frequencies or the packet loss 
rates of the test data are not included in the training set. 

One can see from Table 1 that, the speech quality degrades 
more significantly as the cut-off frequency of the low-pass filter 
decreases (i.e., more high frequency component loss). In 
general, GANs outperform DNN1 for all metrics except LSD. 
This is because that the DNN-based systems were trained to 
minimize the Euclidean distance between the compensated log-
magnitude spectra and the target ones, on the other hand, the 
GANs-based system was an end-to-end framework with 
waveform input. Comparing the results by DNN1 and DNN2, 
one can see that the phase information is very important in 
improving the speech quality with respect to LSD and SNR 
while ignorable in PESQ and STOI. It may be because that the 
phase information is an important component to compute LSD 
and affects the energy distribution in frequency domain. 
However, even with the ideal phase information for 
reconstruction, the DNN2 performs worse than GANs in most 
cases except LSD.   

As illustrated in Table 2, the more packets lost, the worse 
the speech quality with respect to all metrics. The superiority of 
GANs over DNN1 in PLC is more significant than in BWE. 
Even for LSD, GANs lost to DNN1 only at 40% and 50% 

packet loss cases.  Furthermore, the packet loss compensation 
achieved by GANs is comparable to or better than DNN2 at low 
packet loss rates (0%~20%).  

5. Conclusions 
This study investigated the effectiveness of a GANs as a general 
framework for speech loss compensation including both BWE 
and PLC tasks. A set of experiments were carried out to 
evaluate the performance of the GANs-based system in 
comparison with two DNN-based systems. Different frequency 
and packet loss conditions were simulated in the experiments.  
Results show that the GANs obtained better speech quality and 
intelligibility than the DNN1 system for both seen and unseen 
speech loss conditions. Furthermore, the GANs achieved 
comparable performances to the DNN2 system in which the 
ideal phase information was assumed known for reconstruct the 
compensated speech.  
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