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Abstract—The performance of deep learning approaches to
speech enhancement degrades significantly in face of mismatch
between training and testing. In this paper, we propose a domain
adversarial training technique for unsupervised domain transfer,
that 1) overcomes domain mismatch, and 2) provides a solution to
the scenario where we only have noisy speech data, and we don’t
have clean-noisy parallel data in the new domain. Specifically,
our method includes two parts that are jointly trained, 1)
an enhancement net to map noisy speech to clean speech by
indirectly estimating a mask with a spectrum approximation
loss, and 2) a domain predictor to distinguish between domains.
As the proposed approach is able to adapt to a new domain
only with noisy speech data in target domain, we call it an
unsupervised learning technique. Experiments suggest that our
approach delivers voice quality comparable with other supervised
learning techniques that require clean-noisy parallel data.

I. INTRODUCTION

Speech enhancement technique aims to reduce additive

noise to speech signals in order to improve speech intelligi-

bility and quality. It can be used as a pre-processing module

in automatic speech recognition (ASR), speaker identification

systems, and hearing aids design [1], [2], [3]. Among the con-

ventional solutions are spectral subtraction [4], Wiener filtering

[5], minimum-mean-square-error (MMSE)-based spectral am-

plitude estimator [6], and subspace algorithms [7]. In recent

years, various deep learning frameworks were studied that

benefit from their ability to learn from data distribution, such

as deep neural network (DNN) method [8], recurrent neural

network (RNN) method [9], and denoising autoencoder (DAE)

method [10].
For many machine learning tasks, such as speech enhance-

ment, the training and testing data are usually assumed to

have the same probability distribution. However, practical

scenarios often fail to meet this assumption. To address such

training-testing mismatch, a popular technique is to adapt a

model trained under one training condition, the source domain,

towards another testing condition, the target domain. For

example, the study in [11] suggests adapting the last layers

of pre-trained speech enhancement generative adversarial net-

work (SEGAN) with the dataset of new language and noise to

reduce the mismatch between different languages and noise,

but this technique asks for clean-noisy parallel speech data

that are not always available in practice.
Recently, another method widely-used in image processing

is domain adaptation [12]. This technique attempts to adapt

features with a domain discriminator structure via domain

adversarial training (DAT) in face of test data in the new

domain. In speech and speaker recognition, it was used to

adapt acoustic models or produce speaker-invariant features

to overcome the mismatch between training and testing [13],

[14], [15].

Inspired by previous study in DAT, we propose an unsuper-

vised domain transfer approach by adapting the enhancement

net without the need of clean-noisy parallel speech data in the

new domain. In our scenarios, the training data in source do-

main consist of clean-noisy speech pairs, but those in the target

domain only consist of noisy speech. We propose a complete

pipeline to overcome the mismatch across domain, that we call

domain adversarial training approach to speech enhancement,

or SE-DAT. It has the following main advantages:

• SE-DAT can be adapted to target domain with only noisy

speech data, without the need of clean-noisy speech pairs.

• SE-DAT architecture is concise and requires no deep

structure like feature extractor in the work [16] to learn

adapted feature representation.

• We also introduce the dynamic features [17], [18] into

SE-DAT, which takes the temporal context of features into

consideration to ensure the continuity of the enhanced

speech [19], [20].

The rest of this paper is organized as follows. In section

2, we describe the proposed SE-DAT technique. In section

3, experimental settings and results are presented. Section 4

concludes the study.

II. DOMAIN ADVERSARIAL TRAINING FOR SPEECH

ENHANCEMENT (SE-DAT)

With SE-DAT, we assume the model learns the mapping

between noisy speech sample x ∈ X and its corresponding

clean sample y ∈ Y . y and x form a clean-noisy speech

pair. We also assume that the noisy sample x and its clean

sample y belong to a distribution S(x, y), also called source

domain. Suppose that we now have some noisy speech samples

in the new domain without the corresponding clean speech

samples, we hope to adapt the model so that it works both in

the source domain and the new domain. The unpaired dataset

is assumed to belong to the other distribution T (x, y), also

called target domain. Finally, we assign the binary domain

label, d ∈ [0, 1], to each noisy sample at the training stage
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Fig. 1. SE-DAT includes two parts, an enhancement net E (green) that gener-
ates the enhanced speech and a domain predictor D (blue) that distinguishes
between domains the input comes from. The two parts are jointly trained to
minimize the loss of the enhancement net LE and to maximize the loss of
the domain predictor LD at the same time through a GRL.

to indicate which domain the noisy samples come from. We

illustrate the proposed technique in Figure 1.

A. Dynamic features

In the training process, the training speech data from both

the source domain and the target domain are extracted with a

shifting window into static log-power-spectrum (LPS) features,

that is also called the static feature. A frame of speech is repre-

sented by a vector of static features. A limitation of using only

LPS features is that each frame is represented independently

and we cannot guarantee that the produced frame sequence is

smooth and sounds natural. Hence, we introduce the dynamic

features [17], [18] that take the temporal context of features

into consideration. In this work, the dynamic features are the

derivatives of the LPS features, including delta features (first-

order time derivatives) and acceleration features (second-order

time derivatives). We can approximate the delta features and

acceleration features as follows:

fD(t) =

∑L
l=1 l ∗ (fS(t+ l)− fS(t− l))

∑L
l=1 2l

2
(1)

where fS(t) and fD(t) are the static feature and the delta

feature respectively at frame t. L is the order of computing

the derivatives and is set to 2 in this study. The acceleration

features denoted as fA are obtained by applying equation

(1) on the delta features fD. The original LPS feature, delta

feature, and acceleration feature jointly form a new feature

F = [fS , fD, fA] for a speech frame.

B. The enhancement net

The enhancement net E aims to map input noisy speech

to clean speech by estimating a mask, where one bidirectional

long short-term memory (BLSTM) layer produces the adapted

representations v for input feature frame F = [fS , fD, fA].
Such representations v is used by two nets: the enhancement

net E and the domain predictor D. In the enhancement net E,

suppose that the representations vi of input sample xi arrives

from the source domain, we take the dot product between the

static LPS feature fS and its estimated mask. We then take

the enhanced static feature ŷS to obtain its dynamic features

ŷD and ŷA according to equation (1). Finally, we compute

the spectrum approximation loss between the enhanced feature

frame ŷ = [ŷS , ŷD, ŷA] and the corresponding clean feature

frame.

The spectrum approximation loss for enhancement net E
[18] is given as follows:

LE(θf , θe) = ‖ŷS − yS‖2F + wD‖ŷD − yD‖2F
+ wA‖ŷA − yA‖2F

(2)

where θf and θe are parameters of the BLSTM layer and the

rest enhancement net respectively. ‖·‖F is the Frobenius norm.

wD and wA are the weights of cost contributed by the delta

and acceleration features. Besides, if the representations vi for

input sample xi arrives from the target domain (without the

paired clean-noisy speech), we don’t calculate the loss LE for

this input noisy sample due to no clean reference.

C. The domain predictor

SE-DAT aims to overcomes the mismatch between the

source and target domain without the need of clean-noisy

parallel data, which is achieved by the domain predictor. In

domain predictor D, we set the i-th domain label as di for

the representation vi to indicate where vi comes from. If vi
comes from the source domain, di is set to 0 (if vi ∼ S(v),
set di = 0), otherwise di is set to 1 (if vi ∼ T (v), set di = 1).

The cross-entropy loss for domain predictor D is defined as:

LD(θf , θd) = − 1

N

N∑

i=1

[di logP (vi ∈ S(v))

+ (1− di) logP (vi ∈ T (v))]

(3)

where θf and θd are parameters of the BLSTM layer and the

domain predictor D respectively. N is the number of input

training samples.

We now jointly train the two parts: the enhancement net E
and the domain predictor D for 1) seeking the parameters

θf to maximize the loss of the domain predictor D, 2)

simultaneously seeking the parameters θd to minimize the loss

of domain predictor D, and 3) seeking θe to minimize the loss

of the enhancement net E. Such optimization can be achieved

by the gradient reversal layer (GRL). The role of GRL is an

identity transform during the forward propagation. During the

backpropagation, the GRL multiplies the gradient from the

domain predictor D by −λ and then passes it to the BLSTM

layer. The whole cost function of the SE-DAT is formulated

below:

L(θf , θe, θd) = LE(θf , θe)− λLD(θf , θd) (4)
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Fig. 2. The statistics of noise types of CHiME4 dataset (left) and VCTK
dataset (right).

where λ is the gradient reversal coefficient that controls the

trade-off between two objectives during training. λ is defined

as:

λ =
2

1 + exp (−10 ∗ j+k∗J
K∗J )

− 1 (5)

where j denotes the index of current batch and J is the total

number of batches. k presents the index of current epoch

and K is the total number of epochs. In this way, standard

stochastic gradient solvers (SGD) can be applied for the search

of the best parameters (θf , θe, θd) as follows:

θf ← θf − μ(
∂LE

∂θf
− λ

∂LD

∂θf
)

θe ← θe − μ
∂LE

∂θe

θd ← θd − μ
∂LD

∂θd

(6)

where μ is the learning rate.

At the testing stage, only the noisy speech is enhanced

by the enhancement net E, while the domain predictor D is

discarded.

III. EXPERIMENTS

We would like to validate the proposed SE-DAT by adapting

the enhancement net from source domain to target domain.

A. Database

To evaluate the effectiveness of SE-DAT, We resort to two

corpora: one is CHiME-4 dataset [21]; the other is the dataset

released by Cassia Valentini-Botinhao [22], which is same

in SEGAN [23] and Wave-U-Net [24], referred to as VCTK

dataset hereafter. We use CHiME-4 dataset as source domain

data and VCTK dataset as target domain data in order to

validate SE-DAT in reducing the mismatch across domains.

1) Source domain: CHiME-4 dataset: In the CHiME-4

dataset, the simulated data are generated by artificially mixing

clean speech data with noisy backgrounds of four types, i.e.

cafe, bus, street, and pedestrian area. We use the simulated

training set (7,128 utterances) and simulated development set

(1,600 utterances) as source domain data.

TABLE I
COMPARISONS WITH SE-DAT-0 AND SE-DAT IN TERMS OF THE PESQ,

CSIG, CBAK, COVL AND SSNR SCORES ON VCTK TEST SET.
“ZERO-EFFORT” MEANS THAT WE USE THE UNTREATED NOISY SPEECH OF

VCTK TEST SET. HIGHER SCORES ARE BETTER FOR ALL METRICS.

Method PESQ CSIG CBAK COVL SSNR
Zero-effort 1.97 3.35 2.44 2.63 1.68
SE-DAT-0 2.12 3.38 2.46 2.66 1.76
SE-DAT 2.26 3.72 2.77 2.98 4.11

2) Target domain: VCTK dataset: In the VCTK dataset, a

total of 40 different conditions are considered [22]: 10 types

of noise (2 artificial and 8 from the Demand database [25])

with 4 signal-to-noise ratio (SNR) each (15, 10, 5, and 0

dB). There are 14 male and 14 female training speakers. We

use the VCTK dataset at a ratio of 9:1 as the training set

(1,0415 utterances) and development set (1,157 utterances).

With respect to test set, a total of 20 different conditions

are considered [22]: 5 types of noise (all from the Demand

database) with 4 SNR each (17.5, 12.5, 7.5, and 2.5 dB). There

are 1 male and 1 female test speakers.

As shown in Figure 2, the conditions of the CHiME-4

dataset and the VCTK dataset are different in noise types.

Besides, the training speakers and SNR are totally different,

which fits our purpose: evaluating the effectiveness of SE-

DAT in reducing the mismatch between two different domains.

To show the effectiveness of DAT, we use VCTK dataset in

the noisy target domain without the need of its corresponding

clean speech.

B. Experiment setup

The two datasets are sampled at 16 kHz sampling rate

and 16 bits/sample. We applied 512-point STFT to extract

LPS, the delta features and acceleration features. One BLSTM

layer is used with 512 units, which is followed by one feed-

forward layer of 257 logistic units with sigmoid activation

in enhancement net E. The domain predictor D consists of

three feed-forward layers with two ReLU activations and one

softmax activation. The learning rate μ is set to 0.001, and the

batch size is 32. The weights for delta features wD and for

acceleration features wA are empirically set to 4.5 and 10.0
respectively [19], [27]. Early stop and learning rate adjustment

strategy are also adopted in the experiments. The start halving

improvement, halving factor and the end halving improvement

are 0.003, 0.5 and 0.001 respectively.

To evaluate SE-DAT, two models were trained using afore-

mentioned datasets:

• SE-DAT-0: The model, with λ set to 0, is trained only on

source domain CHiME-4 data (with clean-noisy parallel

data) and tested on target domain VCTK test set. This

model serves as the reference baseline for testing, where

model adaptation is no attempted.

• SE-DAT: SE-DAT is trained by both source domain

CHiME-4 data (with clean-noisy parallel data) and target

domain VCTK data (noisy speech without clean speech

counterpart) to verify the effectiveness, which attempts
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TABLE II
TRAINING DETAILS OF DIFFERENT METHODS ON VCTK DATASET.

Method Training set Clean for supervision Feature domain Test set
SEGAN [11] VCTK set Yes time domain VCTK test set

CNN-GAN [26] VCTK set Yes frequency domain VCTK test set
Wave-U-NET [24] VCTK set Yes time domain VCTK test set

SE-DAT
CHiME4 simu set for source domain

VCTK set for target domain
Yes for source domain
No for target domain

frequency domain VCTK test set

TABLE III
COMPARISONS WITH DIFFERENT METHODS IN TERMS OF THE PESQ,

CSIG, CBAK, COVL AND SSNR SCORES ON VCTK TEST SET.
“ZERO-EFFORT” MEANS THAT WE USE THE UNTREATED NOISY SPEECH OF

VCTK TEST SET.

Method Training PESQ CSIG CBAK COVL SSNR
Zero-effort – 1.97 3.35 2.44 2.63 1.68

SEGAN [11] supervised 2.16 3.48 2.94 2.80 7.73
CNN-SEGAN [26] supervised 2.34 3.55 2.95 2.92 –
Wave-U-Net [24] supervised 2.40 3.52 3.24 2.96 9.97

SE-DAT unsupervised 2.26 3.72 2.77 2.98 4.11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

SE-DAT
SE-DAT-0
No preference

Fig. 3. Results of the quality preference test with 95% confidence intervals
for different methods.

to use the noisy target domain data to overcome the

mismatch across domains.

C. Experimental results

1) Objective evaluation: To evaluate the quality of the en-

hanced speech, we compute the following objective measures.

• PESQ: Perceptual evaluation of speech quality, using the

wide-band version recommended in ITU-T P.862.2 [28]

(from -0.5 to 4.5).

• CSIG: Mean opinion score (MOS) prediction of the signal

distortion attending only to the speech signal [29] (from

1 to 5).

• CBAK: MOS prediction of the intrusiveness of back-

ground noise [29] (from 1 to 5).

• COVL: MOS prediction of the overall effect [29] (from

1 to 5).

• SSNR: Segmental SNR [30] (from 0 to ∞).

All metrics compare the enhanced signal with the clean refer-

ence on the VCTK test set (824 utterances), using the tookit in

[31]. As shown in Table I, we note that SE-DAT-0 trained on

CHiME4 simulated training set alone does not perform well

on the VCTK test set in the new domain. With the domain

mismatch, we observe that the performance of SE-DAT-0 is

almost same as the noisy speech without enhancement. By

applying DAT, we observe that the proposed SE-DAT approach

(a)

(b)

(c)

(d)

Fig. 4. Comparisons of spectrums. (a) denotes the spectrum of the noisy
speech and (b) is the spectrum of the corresponding enhanced speech by SE-
DAT-0. (c) represents the spectrum of the corresponding enhanced speech by
SE-DAT and (d) is the spectrum of the corresponding clean speech.

drastically improves all the performance when we train only

on noisy target domain data.

To further showcase the ability of SE-DAT, a speech utter-

ance (spectrum) from VCTK test set is shown in Figure 4. The

original noisy speech is shown in (a) and the corresponding

clean speech is in (d). We observe in (b) that SE-DAT-0

cannot reduce the noise effectively in unseen speech of the new

domain and most of the noise components still remain. On the

contrast, despite training without the clean speech utterances

in the new domain, the proposed SE-DAT still can significantly

remove the noise components as shown in (c).

2) Subjective evaluation: The AB preference test was con-

ducted to assess the subjective perceptual quality of the en-
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hanced speech. In the AB preference test, each paired samples

A and B were randomly selected from the proposed SE-DAT

model and the SE-DAT-0 model. 10 subjects participated in

the preference test. Each listener was asked to choose the

sample with better quality from each pair. The subjective

results of quality preference test are presented in Figure 3. The

results suggest that the speech quality of SE-DAT significantly

outperforms that of SE-DAT-0.

3) Comparisons with other methods: We further compare

the proposed SE-DAT with some recent methods conducted on

VCTK dataset although this comparison is not fair. As shown

in Table II, the methods like SEGAN, CNN-GAN, and Wave-

U-Net are all trained using clean-noisy paired VCTK speech

to supervise the learning of the network without mismatch

problem. We are glad to see that the proposed SE-DAT

transferred the knowledge from the source domain to the target

domain without supervision information from clean speech in

the target domain as reference during training. In addition,

SEGAN and CNN-GAN directly extract the features from

time domain, which means there is no phase problem. CNN-

GAN and the proposed SE-DAT use the spectrum features

through STFT and re-use the phase of noisy speech. As shown

in Table III, despite the unfair conditions, the proposed SE-

DAT still performs better in CSIG and COVL, which means

it produces less speech distortion and achieves a better overall

quality.

IV. CONCLUSIONS

In this paper, we propose a domain adversarial training

technique to speech enhancement (SE-DAT) to overcome the

mismatch across domains and provide a solution for speech

denoising to the scenario where we don’t have clean-noisy

parallel data in the new domain. SE-DAT achieves significant

improvement on VCTK dataset compared with the model

where no effort is made to overcome the mismatch. SE-DAT

also delivers voice quality comparable with other supervised

learning techniques that require clean-noisy parallel data. In

the future, we will explore its ability for speech recognition

as a pre-processing module.
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