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Abstract— The problem with conventional snoring sound 
identification methods is that their performance declines when the 
snoring sound is identified in the actual environment.  Therefore, 
it is necessary to cope with the stationary and nonstationary 
environmental sounds that cause the decrease. In this research, 
we tried to cope with stationary environmental sounds by 
spectrum subtraction method for noise suppression. Non-
stationary environmental sounds were regarded as one class for 
each type of environmental sound. We tried to identify the snoring 
sounds by multikernel learning, which is a multiclass extension of 
a support vector machine and by multilayer perceptron, which is 
a kind of neural network. 

I. INTRODUCTION 

This research is aimed at the construction of a system to easily 
detect sleep states using a common mobile information 
terminal, thus eliminating the need for dedicated hardware. It 
collects sleep sounds through a mobile information terminal, 
analyzes the sleep state, accumulates data at the server, and 
provides the user with the analysis results. An overview of the 
system is shown Fig. 1. Currently, we are working on the 
identification of snoring sounds and environmental sounds. 

Conventional research on snoring identification involves 
learning using a support vector machine (SVM) [1] based on 
the acoustic features of snoring [2, 3]. The average sound 
pressure level (SPL) and mel-frequency cepstrum coefficients 
(MFCCs) are learned and identified by the SVM as acoustic 
features. In these studies, the sleeping environment was 
assumed to be silent, which led to the deterioration of snoring 
sound classification performance owing to the presence of 
environmental sounds in an actual living environments. 

In this paper, we consider the difficulty of characterizing 
nonsnoring sound classes when nonstationary environmental 
sounds with various characteristics are considered. Therefore, 
we used the method of environmental adaption that uses the 
environmental sounds of the sleep environment and the spectral 
subtraction method for noise suppression for the stationary 
environmental sound. For various nonstationary environmental 
sounds, we tried to improve the identification accuracy using 
multiclass classification by an SVM using multikernel learning 
(MKL), and multilayer perceptron (MLP), which is one of the 
deep learning methods. 

 
 
 

II. CONVENTIONAL RESEARCH 

Waida [1] investigated the peak frequency, envelope, 
MFCCs, and formant frequency as acoustic features for the 
snoring sound detection algorithm. Kashina [2] added sound 
pressure levels to these acoustic features, and used three 
classifiers: Fisher's linear discriminant analysis, linear 
discriminant analysis, and SVM using a linear kernel. Then, the 
combination of acoustic features and classifiers were evaluated. 

Fig.1 System overview 

Fig.2 Overview of SVM 

Fig.3 Snoring sound classification with SVM 
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As a result, it was confirmed that the MFCCs are effective as 
an acoustic feature, and the SVM is effective as a classifier. 

An SVM classifies the data by determining the best 
hyperplane that separates all the data points of a snoring sound 
class from those of a nonsnoring sound class (Fig. 2). Snoring 
sounds are detected by using a model learned by the SVM. The 
snoring sound classification process is shown in Fig. 3. Snoring 
sound classification consists of a training stage and a 
classification stage. In the training stage, after the noise 
suppression of the training data noise, the acoustic features are 
extracted. Machine learning is performed using these acoustic 
features and ground truths, and a learning model is created. In 
the classification stage, noise suppression is performed on the 
test data, and then feature extraction is performed. The acoustic 
features and trained model are used to classify the test data into 
the snoring and nonsnoring sound classes. 

III. APPROACH 

Conventional research assumes a noiseless environment but 
when the method is applied to the actual living environments, 
the classification accuracy is decreased. The decrease is 
attributed to stationary environmental noise such as air 
conditioning noise, and nonstationary environmental noise 
such as the creaking of the wall. For stationary environmental 
sounds, we tried to improve the classification accuracy by 
introducing noise suppression before the feature extraction and 
the method of environmental adaptation using the 
environmental sounds of the sleep environment. For 
nonstationary environmental sounds, considering these sounds 
with various features as just one class of sounds could be the 
cause of accuracy degradation. Therefore, we tried to improve 
this by classifying nonstationary environmental sounds into 
different classes. For multiclass classification, we consider 
MKL-SVM and MLP. 

IV. PROPOSED METHOD 

We tried to improve classification accuracy by noise 
suppression and adaptation to the sleep environment for 
stationary environmental sounds, and by multiclass 
classification for nonstationary environmental sounds. 
Multiclass classification utilizes two methods: MKL-SVM 
which extends the conventional method, and MLP. 

A. Noise Suppression 
The spectral subtraction (SS) method is used for noise 

suppression. In the frequency domain, noise 𝑁"(𝜔) is estimated 
from sleep sound 𝑋(𝜔) in which there is no snoring at the 
beginning of sleep. By subtracting the estimated power 
spectrum of noise, a sleep sound 𝑆((𝜔), in which the noise is 
suppressed, is obtained. Let ∠𝑋(𝜔) be the phase spectrum, 𝛼 
the subtraction parameter, and 𝛽 the flooring parameter. 

 
 ,𝑆((𝜔),- = 𝑚𝑎𝑥 2	|𝑋(𝜔)|- − 𝛼,𝑁"(𝜔),-	, 𝛽|𝑋(𝜔)|-	7   
 𝑆((𝜔) 	= 	 ,𝑆((𝜔), ⋅ exp(𝑗∠𝑋(𝜔)) 
 

The parameter 𝛼  controls the amount of noise subtracted 
from the noisy signal. The flooring parameter 𝛽 is a positive 
value close to zero. 

B. Adaptation to the Sleep Environment 
Usually, it takes some time to go to sleep after going to bed. 

During that time, no snoring sound is generated, and only 
environmental sounds of the sleeping environment are included. 
By using this environmental sound data as training data for 
learning by SVM, an SVM model adapted to stationary 
environmental sound is obtained (Fig. 4). This makes it 
possible to classify snoring sounds adapted to the sleeping 
environment. However, it is necessary to consider how much 
should be added to the training data. 

C. Snoring Sound Classification by Multiclass 
In the conventional method, two-class classification was 

used to distinguish between snoring and environmental sounds. 
If the sleep sound consists only of snoring sound and stationary 
environmental sounds, it can be classified as the sleep sound of 
the actual sleeping environment. However, the problem is that 
classification performance declines in the two-class 
classification when nonstationary environmental sounds, such 
as the creaking of the wall, are added. In this method, 
environmental sounds other than snoring are treated as multiple 
classes instead of one class.  

D. Snoring Sound Classification by MKL 
The use of multiple SVMs for two-class classification by the 

conventional method enables multiclass classification by 
multikernel learning [4]. The one-versus-one method creates a 
two-class classifier for all class combinations. This is the same 
process as the training stage in Fig. 4. In the classification stage, 
the extracted acoustic features as shown in Fig. 5 are input into 
all created classifiers. The classes are decided by majority 
voting based on the classification results of all classifiers; 

(1) 

(2) 

Fig.4 Snoring sound classification with SVM 
using ambient noise adaptation 

Fig. 5 Snoring sound classification with MKL 
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finally, the snoring or nonsnoring classes are generated. Let M 
be the number of classifiers to be created, and k the number of 
classes to be classified. 

 
𝑀 = >(>?@)

-
   

E. Snoring Sound Classification by MLP 
In MKL classification, as the number of classes increases, 

the number of classifiers also increases, and learning and 
classification take time. Therefore, we consider using MLP, a 
kind of neural network, that can classify multiple classes with 
one classifier. In MLP, learning is performed in multiple 
classes for each feature of the environmental sounds, and the 
output of the MLP is classified into two classes based on 
snoring sounds and the environmental sounds. 

Fig. 6 shows the process flow for classifying snoring and 
environmental sounds.The sleep sound is divided into frames, 
and after the noise suppression, the acoustic features are 
extracted. Each feature is normalized and passed on the input 
unit. One feature corresponds to one unit of the input layer. In 
the MLP, the input layer receives data, and the output of each 
layer becomes the input of the next layer. The units of each 
layer combine the weights of the input features and assign the 
importance of each features. The network classifies the input 
based on this and outputs it in the output layer. The number of 
units of the output layer is determined by the number of classes. 
Based on the output result of MLP, the final classification 
results for the snoring sounds or the environmental sounds can 
be obtained. 

V. EXPERIMENT 

The objective of the experiment is to evaluate the 
classification accuracy of the proposed method for snoring and 
environmental sounds using noise suppression, adaptation to 
environmental sounds, and multi-class classification (MLP, 
MKL-SVM). 

A. Recording of Sleep sounds and Creation of data 
The sleep sounds were obtained by placing the mobile 

information terminal at the bedside in the home of the subject. 
An iPod touch and the iOS application were used for recording. 

There were 10 subjects and three days of recorded sleep 
sounds. Since one subject's sleep sound did not include snoring, 
data for nine subjects were used to create the experimental data. 

Seven classes of snoring sounds, nonsnoring sounds 
(stationary), running train sounds, alarm sounds, creaking 
sounds, crowing sounds, and running car sounds were extracted 
from the recorded sleep sounds. The experimental conditions 
are listed in Table 1. The ground truth used for learning was 
created manually. As acoustic features, the average SPL in a 
frame was used as one dimension, and MFCCs as 12 
dimensions. A total of 13-dimensional input vectors were used. 

B. Parameters of SS Method 
In order to apply the SS method, an experiment was 

conducted to study the appropriate parameters. The flooring 

parameter β was set to 0 by preliminary experiments. The 
subtraction parameter α was changed from 0.0 to 0.1 in steps 
of 2.0. The data for one subject was used for training, and the 
remaining data for eight subjects were used for the test. The 
data for each subject includes 448 of snoring class and 1036 of 
non-snoring (stationary) class. An F-measure was used to 
evaluate the classification accuracy. The experimental results 
are shown in Fig.7. The best result was obtained when the 
subtraction parameter α = 1.2. The F-measure improved from 
0.72 with no noise suppression (α = 0) to 0.77 when α = 1.2. 

(3) 

Fig. 6 Snoring sound classification with MLP 
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Fig. 7 Classification performance of each subtraction 
parameter α 
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Table 1 Experimental conditions 

Sampling frequency 44.1 KHz 

Quantization bit rate 16 bit 
Frame length 25 ms 

Shift length 10 ms 

FFT size 2048 
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C. Parameter of Adaptation to the Sleep Environment 
The relationship between the number of environmental 

sound data used in learning for adaptation to the sleep 
environment and classification accuracy was verified 
experimentally. One group of data was selected for every nine 
subjects, and it was verified by nine-fold cross-validation. That 
is, eight groups were used as training data, learning was 
performed, the one remaining group was evaluated as test data, 
and the average of all combinations was evaluated. The number 
of snoring and nonsnoring sound classes in one group was 180, 
respectively, and the sleep environment sound was added to the 
nonsnoring class at the time of training. However, the total 
number of nonsnoring classes during training did not change, 
and the ratio of the number of nonsnoring classes in training 
data and the sleep environment sound was changed. An F-
measure was used to evaluate the classification accuracy. The 
experimental results are shown in Fig. 8. The F-measure 
increased from 0.85 to 0.88 by adding 92% of environmental 
sound. 

D. Hyperparameters of MLP 
We implemented MLP using Deep Learning for Java (DL4J) 

[6] and determined the hyperparameters using a grid search. 
For classification, 144 of snoring sounds, non-snoring sounds 
(stationary), running train sounds, alarm sounds, creaking 
sounds, crowing sounds, and running car sounds were used, 
respectively. Each was randomly divided into two groups, with 
half as training data and the other half as test data. Preliminary 
results show that the optimization algorithm used the stochastic 
gradient descent method; the activation function used the 
ReLU (ramp function); the batch size is 1700 so that learning 
converges as monotonically as possible; and the epoch number 
is 2000 . The hidden layer is of five types [1, 2, 3, 4, 5], and the 
number of units in the hidden layer is of 14 types [7, 13, 26, 39, 
52, 65, 130, 260, 390, 520, 650, 650, 1300, 2600, 3900]. Two 
types of learning rates [0.1, 0.01] were used, and the optimum 
value was determined in these ranges. The evaluation index 
used accuracy as a percentage of correctly detected data in the 
test data. However, since classes other than snoring sounds are 
considered as nonsnoring classes, only classes that were 
detected as snoring classes were misidentified as nonsnoring 
classes. The best classification accuracy when changing the 
hidden layer from 1 to 5 is shown in Fig. 9. Table 2 shows the 
best number of hidden units for each number of hidden layers. 
The combination with the best average accuracy for each class 
is 1 hidden layer, 1300 hidden units, and learning rate of 0.01. 
At that time, the classification accuracy is 95.8% for snoring 
sounds, 98.8% for nonsnoring sounds (stationary), and 86.9% 
for average of nonstationary. As the number of hidden layers 
increases, the classification accuracy of the snoring class 
decreased; conversely, the classification accuracy of 
nonsnoring sounds (stationary) tends to improve. However, the 
difference in the classification accuracy of the best parameter 
of each hidden layer is close but not significant. 

In neural network learning, a large amount of learning data 
is required. In this experiment, the number of training data used 
may be insufficient, which could have affected the accuracy. 

There is also the possibility that there are better combinations 
of network configuration and hyperparameters. 

E. Classification Accuracy of MKL-SVM and MLP 
The two learning methods of MKL-SVM, and MLP were 

compared. For classification, snoring sounds, nonsnoring 
sounds (stationary), running train sounds, alarm sounds, 
creaking sounds, crowing sounds, and running car sounds were 
used 144 data, respectively. Each was randomly divided into 
two groups, with half as training data and the other half as test 
data. 

MKL-SVM was implemented using LIBSVM [5]. MKL-
SVM made 21 one-versus-one classifiers for seven 
classifications. Each classifier used the conventional method 
with noise suppression and adaptation to the sleep environment. 
MLP was implemented the same way as in subsection D. From 
the result of D, a three-layer perceptron consisting of the input 
layer, hidden layer (one layer), and output layer was used, 
hyper parameters are 1300 hidden units, learning rate is 0.01, 
and batch learning was performed with a size of 1700 and an 
epoch number of 2000. 

The evaluation index used the accuracy as a percentage of 
correctly-detected data in the test data. Fig. 10 shows the 
classification accuracy of each class of MKL-SVM and MLP. 
The classification accuracy of the snoring sounds was 95.8% 
of MLP and 96.8% of MKL-SVM. Nonsnoring sounds 
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Fig. 8 Classification performance of each ratio of 
ambient noise 

Fig. 9  Accuracy of each hidden layers 

Table 2 Hidden layers and number of best hidden units 

hidden layers 1 2 3 4 5 
units per layer 1300 130 130 52 65 
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(stationary) was 96.3% of MLP and 94.4% of MKL-SVM. The 
classification accuracy of the average of the five nonstationary 
sounds was 81.1% of MLP and 79.7% of MKL-SVM. The 
classification accuracy of snoring sounds was 1% better for 
MKL-SVM, and the classification accuracy for nonsnoring 
sounds (stationary) and the average of five nonstationary 
sounds was better for MLP.   

F. Classification Accuracy of Snoring Sound 
For comparison, two-class classifiers with SVM were added 

to MKL-SVM and MLP. The classification accuracy of snoring 
sounds was compared by three methods. SVM used the 
conventional method with noise suppression and adaptation to 
the sleep environment. MKL-SVM and MLP used the same 
method as in subsection E. For classification, snoring sounds, 
nonsnoring sounds (stationary), running train sounds, alarm 
sounds, creaking sounds, crowing sounds, and running car 
sounds were used 144 data, respectively. Each was randomly 
divided into two groups, with half as training data and the other 
half as test data. 

Table 3 shows the classification accuracy between snoring 
and nonsnoring sounds. For the nonsnoring sounds, the 
conventional SVM had poor classification accuracy of the 
nonstationary environmental sound. Therefore, the nonsnoring 
sounds (stationary) and the average of the five classes of 
nonstationary environmental sounds ware evaluated separately. 
The classification accuracy of snoring sounds was improved by 
13.2% for MKL-SVM and 12.2% for MLP compared with the 
conventional SVM (two-class classification). Nonsnoring 
sounds (stationary) improved MKL-SVM by 1.7% and MLP 
by 5.3%. The average of five nonstationary sounds was 13.9% 
for MKL-SVM and 16.1% for MLP. MKL-SVM is the method 
with the best classification accuracy for snoring sounds, while 
MLP has the best classification accuracy for nonsnoring sounds. 
MLP was the best on average for all classes. 

VI. CONCLUSIONS 

 The problem with snoring sound classification in a actual 
environment is that classification accuracy is reduced by the 
presence of stationary and nonstationary environmental sounds. 
To solve this, we adopted the spectral subtraction method for 
noise suppression and adaptation to the sleeping environment 
to cope with the stationary environmental sounds. In addition, 
the classification accuracy was improved by classifying 
nonstationary environmental sounds into multiple classes. 
Compared with the conventional SVM, the classification 
accuracy for nonstationary environmental sounds was greatly 
improved by multiclass classification. MKL-SVM has the best 
in the classification accuracy for snoring sounds while MLP 
was the best in the other classes. MLP was the best on average 
for all classes. The optimization of hyperparameters in MLP 
and the increase in the number of training data will be further 
studied. 
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Table 3 Classification accuracy of snoring and environmental sounds 

Method snoring nonsnoring 
(stationary) 

aveage of 
nonstationary 

SVM 83.6% 93.5% 70.8% 

MKL-SVM 96.8% 95.2% 84.7% 

MLP 95.8% 98.8% 86.9% 
 

Fig. 10 Classification performance of MKL-SVM and MLP 
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