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Abstract—This paper proposes a simple yet effective unsu-
pervised speaker adaptation approach for batch normalization
based deep neural network acoustic models. The basic idea of
this approach is to recompute means and variances in all batch
normalization layers over the test data for every speaker. Thus
the distribution of the test data can be close to the training data.
This approach doesn’t need to adjust any trainable parameters
of the acoustic model. Experiments are conducted on CHiME-3
datasets. The results show that the proposed adaptation obtains
improvement on the real test set by 2.17 % relative average word
error rate (WER) reduction when compared with the scaling and
shifting factors (SSF) adaptation. Combining our proposed MV
adaptation with the SSF adaptation obtains further improvement.

I. INTRODUCTION

Automatic speech recognition systems have achieved signif-
icant improvement through using deep neural network (DNN)
based acoustic models [1], [2], [3]. However, the performance
will degrade dramatically if there exists the mismatch between
test and training conditions. The mismatch can be caused by
one or many of the factors, such as speaker etc. A lot of efforts
have been made to solve this problem.

One of the approaches is to train the acoustic model using
multi-condition training technique by data augmentation [4].
However, this approach requires a large amount of various
training data that are difficult to obtain. The other is to narrow
the distribution gap between the test and training data by
adaptation techniques. There are many methods proposed to
perform speaker adaptation. These methods can be roughly
classified into three categories: feature compensation, auxiliary
features and model compensation.

One technique for feature compensation is maximum likeli-
hood linear regression (MLLR) transforms or feature-space
variant (fMLLR) [5]. The other technique is linear input
network (LIN) which is developed for neural networks based
models [6]. The LIN defines an additional speaker-dependent
layer between the input features and the first hidden layer.

Auxiliary features adaptation is to augment the input acous-
tic features by utilizing additional speaker-specific features at
both training and test stage. There are about three typical
methods: i-vectors [7], [8], speaker-specific bottleneck features
[9] and speaker code [10].

Model compensation adaptation mainly relies on adjusting
the parameters of DNN based acoustic models. Adapting
the parameters of the models results in producing a large
amount of speaker-dependent parameters [11], [12]. Some
works also are proposed to reduce the adaptation parameters.
These methods are performed by adding a linear speaker-
dependent layer in the neural networks, such as linear hidden
network (LHN) [13], linear output network (LOH) [14], [15]
etc. Recently, Pawel et al. propose a learning hidden unit
contributions (LHUC) to linearly recombine hidden units for a
speaker [16]. Xie et al. [17] further propose a bayesian LHUC
adaptation method to improve the performance. Meng et al.
[18] propose to use adversarial training to perform speaker
adaptation. Wang et al. [19] propose a scaling and shifting
factors (SSF) adaptation for batch normalized acoustic models.
The SSF adaptation is performed by retraining scaling and
shifting factors in all batch normalization (BN) [20] layers for
every speaker. The SSF adaptation has achieved the state-of-
the-art performance on CHiME-3 datasets [21]. However, one
problem of the SSF adaptation is that it uses the means and
variances computed over the training data at the test stage.
Thus the test data can not better match the distribution of
the training data. The other problem is that it will mislead the
acoustic model during adaptation when the first-pass decoding
results have too many errors.

Therefore, this paper proposes a simple yet effective means
and variances (MV) adaptation for batch normalization based
DNN acoustic models. The MV adaptation is an unsupervised
speaker adaptation. The key idea of the MV adaptation is to
recalculate means and variances in all BN layers using the
test data for each speaker. Thus the distribution of the test
data can be close to the training data. Furthermore, the MV
adaptation doesn’t require to adjust any trainable parameters
of the acoustic model. It only needs little computational cost
to recompute means and variances over the test data. So it will
not mislead the acoustic model during adaptation. Experiments
are conducted on CHiME-3 datasets. The results show that
the proposed MV adaptation outperforms the SSF adaptation
proposed by [19], with a further average word error rate
(WER) reduction of 2.17% relative on the real test set.

The rest of this paper is organized as follows. Section
2 introduces batch normalization briefly. The proposed MV
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adaptation is described in Section 3. Experiments are presented
in Section 4. The results are discussed in Section 5. This paper
is concluded in Section 6.

II. BATCH NORMALIZATION

Batch normalization (BN) is proposed to train deep neural
networks by Ioffe and Szegedy [20]. It has become a standard
component in neural networks for many tasks [22], [23]. It not
only yields a substantial speedup in training, but also improves
the performance.

The BN layer is utilized to address the problem of internal
covariate shifting. At first, the activations of each hidden
layer are normalized by means and variances computed over
each training mini-batch. Then the normalized activations are
linearly transformed by scaling factors γ and shifting factors
β before applying non-linear functions. The normalization is
applied to each activation independently. Formally, given the
input to a BN layer X ∈ Rm×n, where m denotes the mini-
batch size, and n indicates the input dimension, an input value
xj is transformed by the BN layer:

yj = γj
xj − µtrain

j

σtrain
j

+ βj (1)

µtrain
j = E[X.j ] (2)

σtrain
j =

√
V ar[X.j ] (3)

where j is the dimension of the input, j ∈ {1...n}; yj is
an output value transformed by the BN layer; γj and βj are
the trainable parameters; mean µtrain

j and variance σtrain
j are

computed over each training mini-batch X.j .
This transformation makes the input distribution of each

hidden layer stable across different mini-batches. At the test
stage, the global statistics mean µtrain

j and variance σtrain
j

computed over all the training data are used to normalize the
test data.

III. PROPOSED MEANS AND VARIANCES ADAPTATION

The proposed means and variances (MV) adaptation is an
unsupervised speaker adaptation. It is performed on batch
normalization based acoustic models. The basic idea of the
adaptation is that the global statistics mean µtrain

j and vari-
ance σtrain

j are just replaced with a re-computation of the
population mean µtest

j and variance σtest
j over the test data

for each speaker. Thus it is more easy to generalize training
data distributions to test data distributions.

The MV adaptation is to recalculate means and variances
in all BN layers using the test data for each speaker. So the
test data can better match the distribution of the training data.
Thus for one BN layer, we can define

ŷj = γj
x̂j − µtest

j

σtest
j

+ βj (4)

where x̂j is an input value of the BN layer; ŷj is an adapted
value of the BN layer output; denotes the jth dimension of the
input data; µtest

j and σtest
j are the mean and variance computed

over all the test data for each speaker; the scaling factor γj

and shifting factor βj are the trainable parameters obtained at
the training stage.

From equation (4), we can see that replacing µtrain
j and

σtrain
j with µtest

j and σtest
j is equivalent to narrow the distri-

bution gab between the test data and the training data. When
performing speaker adaptation, the proposed MV adaptation
is conducted in each BN layer for every speaker. The speaker-
independent batch normalization based acoustic models are
trained at first.

At the training stage, µtrain
j and σtrain

j are computed for
each mini-batch. The samples in one mini-batch are from the
same speaker during training. γj and βj are the trainable
parameters.

At the adaptation stage, the population µtest
j and σtest

j in
every BN layer are recomputed over the test data for each
speaker. All trainable parameters of the speaker-independent
batch normalized acoustic model are frozen.

At the test stage, the recomputed µtest
j and σtest

j are directly
used to perform forward pass algorithm for each speaker by
equation (4). In addition, all the trainable parameters obtained
at the training stage are used at the test stage, such as γj and
βj .

IV. DIFFERENCE BETWEEN MV AND SSF ADAPTATION

The MV adaptation is different from the scaling and shifting
factors (SSF) adaptation proposed by Wang et al. [19].

The SSF adaptation is proposed to retrain the scaling factor
and shifting factor at each hidden layer in batch normalized
acoustic models for every speaker. It needs to adapt the
acoustic model by adjusting the scaling and shifting factors
using first-pass decoding results. In addition, the means and
variances computed over the training data are reused at the
test stage.

The proposed MV adaptation doesn’t need to retrain any
trainable parameters of the acoustic model. So it doesn’t
need the first-pass decoding results. Thus when performing
adaptation, it will not mislead the model. Moreover, the MV
adaptation replaces the means and variances computed at the
training stage with the means and variances recalculated over
the test data for each speaker. This may better adapt an
acoustic model to a target speaker.

V. EXPERIMENTS

Our proposed MV adaptation is evaluated by a series of
experiments in this section.

A. CHiME-3 datasets

Our experiments are conducted on CHiME-3 datasets [21].
The CHiME-3 datasets consist of real and simulated six-
channel audio data in four noisy environments, such public
transport (BUS), cafe (CAF), and pedestrian area (PED),
street junction (STR). A tablet device with six microphones
is designed for collecting real audio recording. The simulated
recordings have been generated by artificially mixing clean
speech data with four noisy environments. The clean speech
corpus includes only read speech from the WSJ0 corpus.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

177



TABLE I
THE WERS(%) OF SPEAKER INDEPENDENT MODELS USING 3-GRAM LM FOR DECODING ON THE DEVELOPMENT (DEV.) SET AND TEST SET.

Dataset Approaches Simu Real Avg.AVG BUS CAF PED STR AVG BUS CAF PED STR

Dev. DNN 7.62 6.30 9.44 6.84 7.91 7.62 8.63 8.01 6.52 7.33 7.62
DNN + BN 6.85 5.47 8.39 6.30 7.23 6.92 8.02 7.09 5.80 6.77 6.88

Test DNN 8.72 7.06 10.20 8.78 8.85 11.20 13.65 11.56 9.87 9.71 9.96
DNN + BN 8.00 6.48 9.45 7.96 8.09 10.22 12.88 10.53 8.37 9.10 9.11

The training set comprises 1600 real and 7138 simulated
utterances, which amount to 18 hours of speech. There are a
total of 4 speakers in the real data, and 83 speakers in the
simulated data. The development set consists of 1640 (4*410)
real and 1640 (4*410) simulated utterances from 4 unseen
speakers. Similarly, the test set consists of 1320 (4*330) real
and 1320 (4*330) simulated utterances from another 4 unseen
speakers. Speaker labels can be used for speaker adaptation in
CHiME-3 challenge [21].

B. Experimental setup

Our experiments are conducted using Kaldi speech recogni-
tion toolkit [24]. In all experiments, we use enhanced single-
channel signals to train acoustic models, perform adaptation
and decoding. The enhanced single-channel signals are gener-
ated by the generalized eigenvalue (GEV) beamformer toolkit
[25]. The code of the GEV toolkit is public available1. The
real and simulated six-channel audio data are enhanced to
single-channel data on the training set, the development set
and the test set respectively. We use the real and simulated
enhanced data to train acoustic models. The total training data
has 8738 (1600+7138) utterances about 18 hours. The total
development data has 3280 (1640+1640) utterances. The total
test data has 2640 (1320+1320) utterances. The training data is
used to update the trainable parameters. The hyper-parameters
are selected on the development data.

We follow the officially released Kaldi recipe to build a
Gaussian mixture model hidden Markov model (GMM-HMM)
model at first. The features are extracted with a 25-ms sliding
window with a 10-ms shift. Input features for the GMM-
HMM model consist of 13-dimensional MFCC and their delta
and delta-delta parameters. The GMM-HMM model has 2024
senones. We use the GMM-HMM model to generate frame-
level state alignments for DNN models.

All the DNN models use a sliding context window of 11
consecutive speech frames as inputs. Each frame is represented
by 40-dimensional log mel-filter bank (FBANK) features plus
their delta and delta-delta. All the DNN models are trained
using stochastic gradient descent (SGD) with a momentum
term to minimize the cross-entropy criterion. The training
terminates on the development set with a little improvement.

The 3-gram language model (LM) is provided by the
CHiME-3 challenge. The vocabulary of this language model is
5K. At the decoding stage, decoding is performed using fully
composed 3-gram weighted finite state transducers.

1https://github.com/fgnt/nn-gev

C. Speaker independent acoustic models

Our DNN based acoustic model is speaker-independent.
The DNN model has 7 hidden layers and each hidden layer
has 2048 sigmoid units. The output layer of the DNN model
has 2024 senones in total. The momentum is set to 0.9. The
initial learning rate is set to 0.008. The mini-batch size is
256. Sentence-level mean normalization is used for the input
features. Then global mean-variance normalization is applied
to the inputs. After training, the 3-gram LM is used for
decoding. The average WERs of the Baseline DNN model
for all speakers on the real and simulated sets are listed in
Table I.

The batch normalized acoustic model is also a speaker-
independent model, where additional BN layer is applied to
each hidden layer in the DNN model. We use the same
configuration of the Baseline DNN model to train the BN-
DNN model. The initial learning rate is 0.001. The means
and variances are computed for each mini-batch. The mini-
batch size is 256. The samples in one mini-batch are from
the same speaker during training. The results using 3-gram
LM for decoding are reported in Table I. From the results, we
can find that the BN model outperforms the DNN model from
11.20% to 10.22% average WER on the real test set.

D. Speaker adaptation

In our experiments, the proposed MV adaptation is com-
pared with the other adaptation methods proposed by previous
researchers. The adaptation is performed for every speaker on
the development set and the test set. There are about 410
utterances for each speaker in the development set and 330
utterances for each speaker in the test set. We use all the
utterances of each speaker for adaptation. The 3-gram LM
is utilized to obtain the first-pass decoding results for other
adaptation methods. It is also used to decode all the acoustic
models. The adaptation methods are as follows.

LHN is proposed by Gemello et al. [13]. It is performed by
inserting an additional linear transformation layer after the last
hidden layer of the Baseline DNN model for each speaker. At
the adaptation stage, we only adapt the linear transformation
layer using all the utterances of every speaker.

LIN [6] is performed by adding an extra linear transforma-
tion layer between the input features and the first hidden layer
of the Baseline DNN model. The linear layer is finetuned for
each speaker.

SSF is the scaling and shifting factors adaptation proposed
by Wang et al. [19]. This method is performed by finetuning
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TABLE II
THE WERS(%) OF SPEAKER ADAPTATION USING 3-GRAM LM FOR DECODING ON THE DEVELOPMENT (DEV.) SET AND TEST SET.

Dataset Approaches Simu Real Avg.AVG BUS CAF PED STR AVG BUS CAF PED STR

Dev.

LIN 5.81 4.74 7.59 5.38 5.51 5.84 6.98 5.92 4.59 5.85 5.82
LHN 5.65 4.42 7.45 5.21 5.53 5.58 6.49 5.81 4.54 5.49 5.62
SSF 4.98 4.16 6.68 4.29 4.79 4.60 5.53 4.34 3.75 4.76 4.79

MV (Ours) 4.81 4.01 6.56 4.12 4.53 4.42 5.41 4.16 3.58 4.52 4.61
MV (Ours) + SSF 4.49 3.72 6.23 3.81 4.21 4.10 5.09 3.91 3.24 4.17 4.30

Test

LIN 6.93 5.62 8.25 6.75 7.09 8.78 10.87 9.04 7.43 7.79 7.86
LHN 6.69 5.35 7.83 6.63 6.93 8.55 10.51 8.74 7.27 7.66 7.62
SSF 5.73 4.33 6.85 5.68 6.05 7.37 9.20 7.53 6.20 6.56 6.55

MV (Ours) 5.58 4.26 6.71 5.52 5.81 7.21 9.02 7.36 6.06 6.41 6.39
MV (Ours) + SSF 5.24 3.84 6.32 5.27 5.54 6.87 8.71 6.95 5.73 6.09 6.06

the scaling and shifting factors of the BN model. All the
utterances of each speaker are used for adaptation.

MV is our proposed method which performed on the BN
model. The population means and variances are recomputed
over the development set or the test data for each speaker.

We implement the above methods based on the Kaldi toolk-
it. The results are reported in Table II. From the results, we can
see that all the adaptation methods outperform the speaker-
independent DNN model and BN model obviously. This is
because of challenging speaking styles of the test speakers
in the CHiME-3 challenge. The LHN adaptation outperforms
the LIN adaptation. It is consistent with the conclusions in
[13]. The SSF adaptation outperforms all the above-mentioned
adaptation methods. Our proposed MV adaptation obtains
2.67% and 2.17% relative average WER reduction on the
simulated set and the real test set over the SSF adaptation
respectively. Combining our proposed MV adaptation with
the SSF adaptation achieves the best performance both on the
development set and the test set.

VI. DISCUSSIONS

The above experiments show that our proposed method is
simple yet effective. Some interesting observations are made
as follows.

The proposed MV adaptation obtains obvious improvement
when compared with LHN and LIN adaptation. It indicates
that all hidden layers of the DNN model are influenced by
speaker shift. It is not enough to perform speaker adaptation
only on one hidden layer of the model.

Our proposed MV adaptation also outperforms the SSF
adaptation. There are two main reasons. One reason is that the
MV adaptation doesn’t need the first-pass decoding results.
Thus when performing adaptation, it will not mislead the
model. The other reason is that the MV adaptation is to
recompute the means and variances over the test data for each
speaker. This may make the acoustic model to better match the
distribution of a target speaker. However, the SSF adaptation
will mislead the acoustic model during adaptation when the
first-pass decoding results have some errors. Furthermore, the
SSF adaptation uses the means and variances computed over
the training data at the test stage. Thus the test data can not
better match the distribution of the training data.

Combining the MV adaptation with the SSF adaptation
can achieve better performance It is because that this method
utilizes the strengths of the MV adaptation and the SSF adapta-
tion. However, This method will take more computational cost
to perform adaptation when compared to the MV adaptation.

In short, it is more easily to generalize training data
distributions to test data distributions just replacing with a
recomputation of the means and variances over the test data
for each speaker. It means that the means and variances of BN
layer contain the characteristics of the speaker. Thus it makes
the MV adaptation simpler yet more effective.

VII. CONCLUSIONS

This paper proposes a simple yet effective unsupervised s-
peaker adaptation for batch normalization based DNN acoustic
models. The proposed MV adaptation doesn’t require to adjust
any trainable parameters of the acoustic model. It only needs
few computational cost to recompute means and variances.
So it will not mislead the acoustic model when performing
adaptation. Experiments are conducted on CHiME-3 corpus.
The results show that the proposed MV adaptation obtains
improvement on the real test set by 2.17% relative average
WER reduction over the SSF adaptation. In future work,
we plan to apply this adaptation to environment and accent
adaptation tasks.
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