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Abstract— More recently, a novel objective function of 

discriminative acoustic model training, namely lattice-free MMI 

(LF-MMI), has been proposed and achieved the new state-of-the-

art in automatic speech recognition (ASR). Although LF-MMI 

shows excellent performance in a wide array of ASR tasks with 

supervised training settings, there is a dearth of work on 

investigating its effectiveness in the scenario of unsupervised or 

semi-supervised training. On the other hand, semi-supervised (or 

self-training) of acoustic model suffers from the problem that it 

is hard to estimate a good model when only a limited amount of 

correctly transcribed data is made available. It is also generally 

acknowledged that the performance of discriminative training is 

vulnerable to correctness of speech transcripts employed for 

training. In view of the above, this paper explores two novel 

extensions to LF-MMI. The first one is to distill knowledge 

(acoustic training statistics) from a large amount of out-of-

domain data to better estimate the seed models for use in semi-

supervised training. The second one is to make effective selection 

of the untranscribed target domain data for semi-supervised 

training. A series of experiments conducted on the AMI 

benchmark corpus demonstrate the gains from these two 

extensions are pronounced and additive, which also reveals their 

effectiveness and viability.  

I. INTRODUCTION 

For many practical situations, in-domain speech training 

data without correct transcripts are much easier to collect than 

those with transcripts when building ASR systems. In the face 

of such situations, how to leverage limited available 

transcribed in-domain data in conjunction with a large amount 

of untranscribed (or imperfectly transcribed) in-domain data 

and/or a large amount of publicly available transcribed out-of-

domain data becomes a topic of central concern. To this end, 

two orthogonal but complementary research directions are 

worthy of exploration: 1) transfer learning that distills 

knowledge from an outside domain that has sufficient and 

inexpensive data equipped with orthographic transcripts, and 

2) semi-supervised training that makes effective use of a 

collection of untranscribed in-domain data. 

Transfer learning, which manages to transfer knowledge 

from one domain to another, is inspired by the fact that 

humans has the ability to make clever use of knowledge 

learned beforehand to tackle new problems in a better and 

efficient manner. Transfer learning is also known by a variety 

of other names [1, 2, 3], including multi-task learning, 

inductive learning, cumulative learning, and among others. 

On a separate front, semi-supervised training addresses the 

issue that the transcribed data may be too few to build a good 

statistical model (e.g. classifier or recognizer), by making use 

of a small amount of transcribed data and a large amount of 

untranscribed data. In the context of ASR, most of the 

previous studies on semi-supervised training of acoustic 

models belong to the so-called self-training, which generally 

consists of two stages [4, 5, 6]. In the first stage, a prototype 

ASR system is constructed by training its (seed) acoustic 

model with limited labeled (or supervised) data. In the second 

stage, the prototype ASR system is employed to generate the 

transcripts of a large amount of unlabeled data, which in turn 

can be treated as augmented training data for estimating a 

refined acoustic model. However, the automatic transcripts 

are error-prone such that some mechanisms based on ASR 

confidence-based filtering can be applied to filter out 

unreliable data, which can be conducted at either the frame-

level [7], word-level [8] or utterance-level [5, 7, 9]. 

More recently, a novel objective function of discriminative 

acoustic model training, namely LF-MMI, has been proposed 

and achieved the new state-of-the-art for ASR. Although LF-

MMI shows excellent performance in a wide array of ASR 

tasks with supervised training settings, there has been little 

work on investigating its effectiveness in the scenario of 

unsupervised or semi-supervised training. On the other hand, 

semi-supervised of acoustic model suffers from the problem 

that it is hard to estimate a good model when only a limited 

amount of correctly transcribed data is made. It is also 

generally acknowledged that the performance of 

discriminative training is vulnerable to correctness of speech 

transcripts employed for training. In view of the above, this 

paper explores two novel extensions to LF-MMI [11, 12, 13]. 

The first one is to transfer knowledge (acoustic training 

statistics) from a large amount of out-of-domain data to better 

estimate the seed models for use in semi-supervised training. 

The second one is to make effective selection of the 

untranscribed target domain data for semi-supervised training. 

We also evaluate whether the benefits from the two 

extensions can add together. Our code is open sourced.
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II. RELATED WORK 

A. Transfer learning 

A number of studies have been conducted to develop 

transfer learning methods for use in speech and language 

processing with various settings; a comprehensive summary 

of recent related attempts can be found in [14]. For example, a 

simple linear input network (LIN) has been employed in [15] 

which try to adapt the acoustic model to a new domain by 

adjusting the network parameters, especially for speaker 

adaptation. This work has motivated many follow-up studies, 

such as feature space discriminant linear regression (fDLR) 

[16] and linear transform using linear hidden networks (LHN) 

at various stages within the component neural network of an 

acoustic model [17]. More recently, LHN-based adaptation 

and multitask-based adaptation of deep neural network 

(DNN) based acoustic models were compared for ASR in [18]. 

Notably, an appealing multitasking architecture has been 

successfully designed and developed for multilingual acoustic 

model training [19, 20]. For transfer learning, it was found 

that not only the amount of training data but also the 

relatedness of the tasks was found to be important for its 

practical effectiveness [21, 22].  

B. Semi-supervised training 

For acoustic modeling, semi-supervised training 

(sometimes called self-training) is developed to lessen the 

need for large volumes of transcribed training speech, which 

plays a crucial role when building an ASR system for a 

resource-scarce task or reconfiguring it for a new domain. It is 

common practice to utilize a small amount of 

orthographically-transcribed training speech utterances to 

build an initial acoustic model which is then employed to 

generate automatic transcripts for a large amount of 

untranscribed training speech utterances. The 

orthographically- and automatically-transcribed training 

speech are then used in conjunction to estimate a better 

acoustic model. However, empirical evidence in the literature 

indicates that discriminating training algorithms (including 

LF-MMI) are sensitive to the accuracy of transcripts of 

training speech [11, 12, 13]. Therefore, previous studies had 

largely focused on designing confidence-based filters to select 

automatically transcribed training speech segments that are 

expected to be useful for semi-supervised training of acoustic 

models [4, 5, 6]. For example, a frame-level confidence filter 

is adopted in the discriminant training process to preserve 

important training speech segments [23]. In addition, an 

utterance-level confidence-based filter in combination with 

one-best results was investigated in [24]. Further, the authors 

in [25] attempted to use ASR lattice posteriors [26, 27] 

meanwhile retaining the whole lattices of automatically-

transcribed training speech segments for semi-supervised 

training. Our approach proposed in this paper bear a close 

resemblance in spirit to that proposed in [25], with the key 

distinction that our re-trained acoustic model is not based on 

random initialization but instead on top of a pre-trained model 

which is powered by weight transfer or multitask learning, 

stemming from transfer learning. 

III. TRAINING CRITERION FOR LOW-RESOURCE ASR 

For supervised training, the objective of LF-MMI can be 

expressed as the summation of the conditional log-likelihoods 

of the reference (orthographic) transcripts of training 

utterances given their acoustic feature vector sequences [28]: 

ℱLFMMI = ∑ log 𝑃(𝑆𝑢|𝑂𝑢, 𝜆)
𝑢

 (1) 

where, 𝑆𝑢  and is the reference transcript of utterance 𝑢, and 

𝑃(𝑆𝑢|𝑂𝑢 , 𝜆) is the probability of 𝑆𝑢 given the acoustic feature 

vector sequence 𝑂𝑢 of utterance 𝑢 and the model parameter 𝜆. 

However, for semi-supervised training, the automatic 

transcripts of training speech utterances are not necessarily 

correct. Therefore, we can rewrite the formula as follows:  

ℱSemiLFMMI = ∑ 𝛼𝑆𝑢
′ log

𝑃(𝑂𝑢|𝑆𝑢
′ , 𝜆seed)𝑃(𝑆𝑢

′ )

∑ 𝑃(𝑂𝑢|𝑆𝑢
′′, 𝜆seed)𝑃(𝑆𝑢

′′)
𝑆𝑢

′′𝑢
 (2) 

where 𝑆𝑢
′  is top ranking automatic transcript of utterance 𝑢, 

𝑆′′  belongs to all possible automatic transcripts and 𝜆seed 

denotes the seed model. The weighting factor 𝛼𝑆𝑢
′  controls the 

contribution of 𝑆𝑢
′′  to the training and can be calculated 

through the following formula: 

𝛼
𝑆𝑢
′ = {

1,

𝑃 (𝑂𝑢|𝑆𝑢
′

,  𝜆seed) ,
 

𝑢 ∈ transcribed data 

𝑢 ∈ untranscribed data 
(3) 

Furthermore, the optimization of Equation (2) can be broken 

down into two problems: 1) how to improve the "quality" of 

the seed model? and 2) how to determine the weighting factor? 

We will defer the tackling of the latter one to the next section. 

The former one hinges on several factors, including 

initialization, model structure, training criteria, and more; any 

kind of adjustment will affect the performance of the model.  

A. Improving the seed model 

In this paper, we seek to leverage the conception of transfer 

learning to improve the accuracy of the seed model. To this 

end, we use the weight transfer strategy advocated in [29]. A 

common practice of weight transfer is to conduct a two-stage 

training process by first freezing the low-level layers and train 

task-specific layers at the first stage, and then fine-tuning the 

whole neural network at the second stage using a smaller 

learning rate [22]. In contrast, the method proposed in [29] 

tries to train the transferred layers with a smaller learning rate, 

while simultaneously training the task-specific layers with a 

larger learning rate, with a single-stage training setup. 

B. The weighting factor of the untranscribed data 

For semi-supervised training, we use the recipe proposed in 

[25]. Unlike the traditional semi-supervised training methods 

that adopt the frame-level, word-level or utterance-level 

confidence scores generated by the seed model to solicit 

possibly correct automatically transcribed data for training, 

the method proposed in [25] uses the entire lattice pertaining 

to a training utterance as the supervision. In concordance with 

the fundamental procedure for semi-supervised training, we 

first use the LF-MMI based acoustic model trained with a 

small amount of orthographically transcribed speech data or 

trained with transfer learning to decode those in-domain data 
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without orthographic transcripts to obtain the lattice of 

alternative pronunciations for a speech utterance. In turn, the 

word lattices of speech utterances are converted to their phone 

lattices as depicted in [10]. Finally, we take the resulting 

phone lattices as the supervision and perform the standard LF-

MMI training on it by weighting the top ranking hypotheses 

with their corresponding posterior scores.  

ℱNCE = ∑ ∑ 𝑃(𝑆𝑢
′ |𝑂𝑢, 𝜆seed)log 𝑃(𝑆𝑢

′ |𝑂𝑢 , 𝜆seed) 

𝑆𝑢
′𝑢

  

  = − ∑ 𝐻(𝑆𝑢
′ |𝑂𝑢 , 𝜆seed)

𝑢

 (4) 

where 𝑃(𝑆𝑢
′ |𝑂𝑢, 𝜆𝑠𝑒𝑒𝑑) is lattice posterior score of a training 

speech utterance without its corresponding orthographic 

transcript, and set to be 1 otherwise. We can refer to Equation 

(4) as the negative conditional entropy (NCE), denoted by 

−𝐻 (𝑆𝑢
′

|𝑂𝑢, 𝜆𝑠𝑒𝑒𝑑), of the transcript 𝑆𝑢
′  under the condition 

that the model parameter 𝜆𝑠𝑒𝑒𝑑 and its corresponding acoustic 

feature vector sentence 𝑂𝑢  are given [17, 18, 28]. Therefore, 

Equation (4) can naturally account for the quality of the top 

ranking transcripts when conducting the LF-MMI based 

discriminative training in a semi-supervised manner, which is 

anticipated to improve the training performance without 

resource to the confidence filter. Note here that our method 

can be viewed as a substantial extension of the one that was 

proposed in [25], the key distinction that retaining the 

initialized parameters of the seed model and limiting the 

learning rate are employed when updating the model 

parameters. 

IV. EMPIRICAL EXPERIMENTS 

A. Experimental setup 

We evaluate our proposed approach on the AMI meeting 

transcription database and task [31], while all experiments are 

conducted using Kaldi toolkit [30]. For the AMI database, the 

speech corpus consisted of recordings from the individual 

headset microphones (IHM), while a pronunciation lexicon of 

50K words was used. Trigram language models were trained 

on the AMI training set. We set aside a randomly chosen 

subset of speech utterances (62 hours) from the corpus as the 

untranscribed data, while the others as the transcribed data. 

Table 1 shows some basic statistics of the AMI corpus in our 

experiments. The word error rate (WER) improvements from 

semi-supervised training are evaluated by Absolute 

Improvement (AI) and WER Recovery Rate (WRR) [32]: 

WRR =
𝐵𝑎𝑠𝑙𝑖𝑛𝑒𝑊𝐸𝑅 − 𝑆𝑒𝑚𝑖𝑠𝑢𝑝𝑊𝐸𝑅

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑊𝐸𝑅 − 𝑂𝑟𝑎𝑐𝑙𝑒𝑊𝐸𝑅
 (5) 

1) Baseline approach 

For acoustic modeling, our basic recipe is to first train a 

GMM-HMM acoustic model using the speech utterances with 

corresponding orthographic transcripts and use the prior 

distribution of the senones obtained from the GMM 

components, in conjunction with the LF-MMI training 

objective, to build the time-delay neural network (TDNN) 

acoustic model [10], which is in turn taken as the seed model. 

The speech feature vectors are 40 MFCC coefficients 

extracted in 25 ms long windows every 10 ms, augmented 

with 100-dimensional i-vectors [33] for speaker adaptation of 

TDNN. To rule out the effect of the i-vector extractor, we 

trained the i-vector extractor combining both transcribed and 

untranscribed datasets. Furthermore, for comparison purposes, 

we only used statistics obtained from the untranscribed 

dataset to train the context-dependent decision tree. The 

phone language model used for creating the denominator FST 

was estimated using phone sequences gathered from both 

transcribed and untranscribed datasets as in [29]. We, 

however, give a slightly higher weight to the phone sequences 

extracted from the transcribed data set. Figure 1 is a 

schematic depiction of the overall training strategy which 

consists of three steps. In the first step (involving the yellow 

and green blocks), we obtain the acoustic model trained on 

Librispeech. In the second step (involving the yellow and blue 

blocks), The knowledge learned from Librispeech is 

transferred to the AMI through the additional use of a 16-hour 

supervised data (AMI). In the third step (involving the yellow, 

blue and red blocks), we retain the parameters of the seed 

model and use the unsupervised data to further enhance the 

acoustic model.  

2) Transfer learning for estimating the seed model 

We used the Librispeech dataset [34], which contains about 

1,000 hours of audiobook speech recordings, as the 

orthographically transcribed out-of-domain data. For acoustic 

modeling of the Librispeech dataset, the number of hidden 

layers for the TDNN architecture was set to 6, which is the 

same as the baseline system for the AMI dataset. The overall 

 
Figure 1: A schematic depiction of the overall 

training strategy. 

 

Table 1: AMI Corpus (Semi-supervised setup) 

 Train 

(supervised) 

Train 

(unsupervised) 

Dev. Eval. 

Hrs. 16 62 8.71 8.97 

Utts. 20,000 88,104 13,059 12,612 
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WER of the acoustic model trained by Librispeech, pertaining 

to its four test sets (Dev, Dev_Other, Test and Test_Other), 

are 3.72, 9.90, 4.18, and 10.37, respectively. This is in parallel 

with the previous results in the literature, revealing that the 

TDNN-based acoustic model can give very good ASR 

performance when sufficient training data (e.g., 1,000 hours) 

is made available. Despite this, for many new ASR 

application domains or tasks, we are always facing the issue 

of lacking orthographically transcribed training data.  

In the experiments of transfer learning, we will re-initialize 

an affine layer instead of training an extra layer as the 

transferred layer and train the transferred layer with a smaller 

learning rate while training the task-specific layers with a 

larger learning rate in the single-stage training. Put another 

way, the difference between the training approaches stated in 

Section A and Section B is the initialization of the seed 

acoustic model and ASR retraining criterion for the semi-

supervised setup. 

B. Experimental results 

1) Semi-supervised training using lattices as supervision 

In the first set of experiments, we assess the performance 

level of adding the lattice posterior scores (i.e., weighting 

factors) and using lattices (with a beam size set to 4) as 

supervision for semi-supervised LF-MMI training. The 

corresponding results are shown in Table 2, where the 

acoustic model of “Baseline” was trained with the 16-hour 

training utterances equipped with their orthographic 

transcripts. “NW” refers to no weighting, for which the 

acoustic model was trained by simple putting 16-hour 

orthographically transcribed and 62 untranscribed datasets 

together as the training corpus. “TOP” is similar to “NW” by 

using the top-one recognition hypothesis of an untranscribed 

training utterance as its automatic transcript except that a 

weight factor is additionally included in the LF-MMI training 

formula, as previously shown in Equation (2). “LS” denotes 

that the top-M recognition hypotheses (M is equal to 4) of an 

untranscribed training utterance as taken as its automatic 

transcripts, with their respective weight factors additionally 

included in the LF-MMI training formula. “Oracle” stands for 

the condition that the all training speech utterances of AMI 

(amounted to 72 hours) were equipped with their 

corresponding orthographic transcripts. 

As can be seen from Table 2, when the traditional two-

stage semi-supervised training is directly carried out, the 

WRR can reach a moderate performance level of 24%, thanks 

to the well-trained seed model by LF-MMI, which is achieved 

with only 16 hours of training utterances. The use of lattice 

posterior scores as the weighting factors (denoted by TOP) 

can further increase WRR to 33%, which also manifests that 

the weighting factors (or the notion of minimizing negative 

conditional entropy) can effectively work in conjunction with 

LF-MMI to assist semi-supervised training. Therefore, from 

now on, unless otherwise stated, all results for the subsequent 

experiments of semi-supervised training will make use of 

lattice posterior scores. LS that capitalizes on the lattices for 

supervision by using the top-M recognition hypotheses of an 

untranscribed training utterance as its automatic transcripts 

achieves better WRR than TOP. Lastly, WLS is the extension 

of the LS, which retains the parameters of the seed and limits 

the learning rate during the process of semi-supervised 

training, achieves the best WRR of 60 %. This result also 

confirms the usefulness of retaining more recognition 

hypotheses for untranscribed training utterances which can 

benefit the semi-supervised acoustic model training. 

2) Weight transfer for semi-supervised training 

In the second set of experiments, we turn to evaluate the 

utility of applying weight transfer from an outside domain 

(namely, Librispeech) to the AMI task with the semi-

supervised training setup; the corresponding results are shown 

in Table 3. The acoustic model of “Baseline (AMI)” was 

trained merely with 16-hour orthographically transcribed 

utterances of AMI. “TF (LIB2AMI)” is intended to pre-train 

the acoustic model with Librispeech, followed by using the 

aforementioned 16-hour utterances of AMI to transfer 

knowledge from Librispeech to AMI through weight transfer. 

We then can obtain the automatic transcripts of the rest 62-

hour AMI untranscribed utterances for the subsequent semi-

supervised training setups, namely, “TF (LIB2AMI) + LS”, 

“TF (LIB2AMI) + WLS” and “TF (LIB2AMI) + WLS_ES.” 

They all are counterparts of “LS” shown in Table 2. For “TF 

(LIB2AMI) + WLS”, its seed acoustic model was pre-trained 

with the Librispeech corpus, in contrast to “TF (LIB2AMI) + 

LS” that adopted random initialization. Further, “TF 

(LIB2AMI) + WLS_ES” additionally employed the early 

stopping scheme in ration to “TF (LIB2AMI) + LS.” Several 

observations can be drawn from Table 3. First, the system 

“TF (LIB2AMI)” that used Librispeech as the source for 

model pre-training as well as the 16-hour orthographically 

transcribed utterances of AMI for subsequent model training, 

can deliver superior performance than the best system shown 

in Table 2. This also indicates that the knowledge of out-of-

domain data can be simply transferred to a target domain via 

weight transfer, whose effect is more significant than 

including untranscribed data for semi-supervised training. 

Second, semi-supervised training using the Librispeech 

dataset as the source for model pre-training can further benefit 

Table 2. WER (%) and WRR results of Semi-supervised training 

Supervision Dev. Eval. WRR 

Baseline 27.2 27.8 - 

NW 26.2 26.8 24% 

TOP 26.0 26.2 33% 

LS 25.5 25.7 45% 

WLS 24.7 25.3 60% 

Oracle 23.5 23.1 - 

 
Table 3. Weight transfer in conjunction with semi-supervised 

training 

Supervision Dev Eval WRR AI 

Baseline(AMI) 27.2 27.8 - - 

TF (LIB2AMI) 24.8 25.2 60% 2.4% 

TF (LIB2AMI) + LS 24.5 24.6 70% 2.9% 

TF (LIB2AMI) + WLS 24.2 24.3 78% 3.2% 

TF (LIB2AMI) + WLS_ES 23.8 23.8 88% 3.7% 

Oracle 23.5 23.1 - - 
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semi-supervised training (“TF (LIB2AMI) + WLS” vs. “TF 

(LIB2AMI) + LS”). Finally, our best system (“TF (LIB2AMI) 

+ WLS_ES”) can achieve the highest WRR of 88%. 

V. CONCLUSIONS 

In this paper, we have explored two novel extensions to the 

standard TDNN-based acoustic modeling with the LF-MMI 

training criterion. The first one is to distill knowledge 

(acoustic training statistics) from a large amount of out-of-

domain data to better estimate the seed models for use in 

semi-supervised training. The second one is to make effective 

selection of the untranscribed target domain data for semi-

supervised training. Empirical experiments conducted on the 

AMI benchmark corpus have demonstrated the effectiveness 

and viability of our approach. As to future work, we are 

interested in applying our approach to the sequence-to-

sequence ASR paradigms, including CTC (connectionist 

temporal classification), attention model, and their fusion. We 

also plan to explore more sophisticated semi-supervised 

training, transfer learning and their combination with 

disparate discriminative acoustic model training criteria. 
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