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Abstract—Modern language identification (LID) systems re-
quire a large amount of data to train language-discriminative
models, either statistical (e.g., i-vector) or neural (e.g., x-vector).
Unfortunately, most of languages in the world have very limited
accumulation of data resources, which result in limited perfor-
mance on most languages.

In this study, two approaches are investigated to deal with
the LID task on low-resource languages. The first approach is
data augmentation, which enlarges the data set by incorporat-
ing various distortions into the original data; and the second
approach is multi-lingual bottleneck feature extraction, which
extracts multiple sets of bottleneck features (BNF) based on
speech recognition systems of multiple languages. Experiments
conducted on both the i-vector and x-vector models demonstrated
that the two approach are effective, and can obtain promising
results on both in-domain data and out-of-domain data.

Index: low-resource, data augmentation, multi-lingual, bottle-
neck feature, language identification

I. INTRODUCTION

Low-resource spoken language identification (LID) is an ur-
gent problem in the LID study now. For most of languages
in the world, the speakers are very limited, and so the
accumulation for these languages are rather limited. This leads
to the low-resource problem when LID is applied to diverse
languages. Typical low-resource languages include Indonesian,
Kazakh and Tibetan.

Most modern LID systems are based on language-
discriminative models, for example i-vector model [1], close-
ly following the developments in the Speaker Identification
(SID) [2]. More recently, Deep Neural Network (DNN) [3]
have been proposed, for example x-vector model [4] and the
PTN model [5]. It has been reported that in many cases the
DNN-based models show superior performance compared to
i-vector based LID techniques formulated using GMM-UBM
framework [6]. However, all these models require a large
amount of data; in the low-resource scenarios, the training
data is often too limited to support large-scale models.

In order to adapt to low-resource scenarios, we need
to adopt some other features which have more language
discriminative information than raw acoustic features. The
phone recognition followed by language modeling (PRLM)
model [7] encourages us to build a feature extractor which
can extract phonetic information. In [8], [9], some researchers
have proposed an i-vector based on LID formulation using
phonetic bottleneck features (BNFs) extracted from a neural
network and proved that it has better performance compared
with i-vector based on LID system using Shifted Delta Cepstra
(SDC) features. However, few researchers have applied these

methods to deal with the low-resource scenarios in the LID
task, and few researchers have explored the performance of
low-resource LID. The idea of using extra information to
boost LID performance was also reported in the phone-aware
modeling [10] and speaker-aware modeling [11].

In this paper, we investigate how to improve the perfor-
mance of the low-resource scenarios in the LID task. As
a preliminary study, we apply two systems: traditional i-
vector system and x-vector system. The input features are
mfcc and fbank features. Additionally, BNFs are also applied.
We consider only two conditions: in-domain data and out-
of-domain data. The methods are the data augmentation and
multi-lingual bottleneck feature extraction.

• Data augmentation approach is enlarging the data re-
sources for modelling. There are two kinds of data
augmentation. One is additive technique, which uses 2-
fold augmentation strategy that combines the original
”clear” training list with 1 additive noise of multiple
noises. The other is combined technique, which uses
5-fold augmentation strategy that combines the original
”clean” training list with 4 augmented copies involving
speed perturbation, volume perturbation, reverberation
and noise.

• Multi-lingual bottleneck feature extraction approach
extracts multiple sets of bottleneck features (BNF) based
on speech recognition systems of multiple languages.
There are three nets in this approach. The first net is
combined by appending directly which is assume that
different phonetic BNFs is related; The second net is
inputting independently which is assume that there is no
relevance with each other; And the last net is score fusion.

II. METHODS

In this section, we describe data augmentation and multi-
lingual bottleneck feature extraction.

A. Data augmentation
The data augmentation approach is inspired by [12], [13]. The
main idea is enlarging the data resources for modelling. We
use the additive technique and combined technique to explore
the performance of data augmentation in low-resource LID
task.

In Fig.1, we show two kinds of data augmentation. One
is 2-fold augmentation strategy. we combine the original
”clear” training data with 1 additive noise. The 1 additive
is synthesized the MUSAN ( including Babble, Music and
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(a) Additive technique (b) Combined technique

Fig. 1. Two combination techniques of data augmentation.

Noise ) with the original ”clear” training data after speed
perturbation, volume perturbation and reverberation as shown
in Fig.1.(a). The other is 5-fold augmentation strategy. we
combine the original ”clear” training data with 4 augmented
copies which are obtained by speed perturbation, volume
perturbation, reverberation and MUSAN respectively as shown
in Fig.1.(b). The data augmentation strategy are as follows:

• Speed perturbation: apply 1.1 times or 0.9 times speed
of the original recording.

• Volume perturbation: the scale of volume is chosen
randomly between 0.125 and 2.

• Reverberation: the artificially reverberated data is convo-
luted with simulated RIRs.

• Babble: add the summation of the speech from several
speakers randomly selected from MUSAN [12] to the
original signal (13-20dB SN

• Music: add a randomly selected music file from MUSAN
to the original signal (5-15dB SNR).

• Noise: add MUSAN noises every second throughout the
recording (0-15dB SNR).

Speed perturbation uses a specified speed factor [14] to
change the speed of the speech signal. Reverberation convolves
room impulse responses (RIR) with audio. For additive noise,
we use the MUSAN dataset, which consists of over 900
noises, 42 hours of music from various genres and 60 hours
of speech from twelve languages [15]. Both MUSAN and the
RIR datasets are from http://www.openslr.org.

B. Multi-lingual bottleneck feature extraction
Multi-lingual bottleneck feature extraction approach extracts
multiple sets of bottleneck features (BNF) based on speech
recognition systems of multiple languages. It is inspired by the
complementarity of universal speech attributes and language-
dependent phonemes.

The accuracy of phone recognizer is critical, but not the only
factor for LID performance in the phone-aware approach. In
other words, it is fine to model the phonemes in the language
model based on the assumption of similarity between these two
language if a phoneme of another language to be recognized
is always recognized as the one in the phone set designed for
the phone recognizer. It is quite common for spoken languages
in different language families that the phonemes cannot be
represented well in language modeling if some phonemes
are very different from the language for phone recognizer.
Meanwhile, it might be possible that some language ASR
systems attribute to one aspect of the language space.

We relieve this problem by using attribute units which are
potentially language-universal across all spoken languages.

In this study, we show the complementary nature of speech
attribute detectors to phone recognizers by combining the
BNFs extracted from different ASR decoders with phones and
attributes.

(a) (b)

(c) (d)

Fig. 2. Several combination techniques of multi-lingual bottleneck feature
extraction. Here (a)(c) shows that different phonetic BNFs is related, and
(b)(d) shows that there is no relevance with each other.

In Fig.2, we use just two mono-lingual BNFs to fuse
different ways in the preliminary study. In Fig.2.(a)(c), we
append directly two BNFs by frame level. And in i-vector
system, we reduce it from 512 dimensional to 80 dimensional.
In Fig.1.(b), we first reduce the BNFs from 256 dimensional
to 40 dimensional respectively, then append by frame level.
At last the combined feature is the input feature of i-vector
system. In Fig.2.(d), we input the two BNFs into the x-vector
separately and parameters of the x-vector system are shared.
Additionally, score fusion is also used in this study.

III. EXPERIMENTS

We build several systems to deal with the low-resource scenar-
ios in the LID task. All systems are built on the Kaldi speech
recognition toolkit [16].

A. Database

1) Training data: The training data is taken from the 2018
Oriental Language Recognition (OLR) Competition, which
was organized by Tsinghua University and SpeechOcean [17].
This competition has been arranged for three times, with the
aim of promoting the research on LID techniques for oriental
languages [17]–[19]. The data is provided by Haitian Ruisheng
and contains 10 languages. The recordings are the traditional
telephone channel with 16kHz, 16 bit, mono format. Each
language is about 10 hours, and the gender ratio of men
and women is 1:1. In order to emphasize the influence of
data resources on language identification, this training data is
divided into four data equilibrium quantity set, which are 25h,
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50h, 75h, 106h, named train 25h, train 50h, train 75h and
train 106h respectively in the experiment.

2) Evaluation data: Our evaluation consists of two distinct
datasets: in-domain data and out-of-domain data. The in-
domain data is the standard test data for AP18-OLR, which
contains 10 closed languages, containing 1800 utterances each.
The out-of-domain data is downloaded from the Internet,
which involves 6 closed languages, each in a particular lan-
guage. The six languages are: Mandarin, Japanese, Russian,
Vietnamese,Tibetan and Uyghur. containing about 1800 utter-
ances each. The channel of out-of-domain recordings is the
video channel. Before extracting the features of the out-of-
domain data speech segment, we converted the recordings to
16KHz, 16 bit, mono format.

The training data is 106.58h in length, the in-domain data
is 34.05h in length, and the out-of-domain data is 15.71h in
length.

B. Baseline
1) i-vector: Our acoustic-feature baseline system is a tra-

ditional i-vector system. This system is based on the GMM-
UBM recipe described in [2]. The features are 13 mfccs with
a frame-length of 25ms. They are mean normalized over a
sliding window of up to 3 seconds. Delta and acceleration
are appended to create 39 dimension feature vectors. An
energy-based speech activity detection (VAD) system selects
features corresponding to speech frames. The UBM is a 1024
component diagonal-covariance GMM. The system uses a 400
dimensional i-vector extractor.

2) x-vector: The x-vector system is based on a frame-
work that developed for speaker recognition [20]. The
recipe is based on the SRE16 v2 recipe available in
the main branch of Kaldi as https://github.com/kaldi-
asr/kaldi/tree/master/egs/sre16/v2. The feature learning com-
ponent is a 5-layer time-delay neural network (TDNN). The
statistic pooling layer computes the mean and standard de-
viation of the frame-level features from a speech segment.
The size of the output layer is 10, corresponding to the
number of languages in the training data. Once trained, the
512 dimensional activations of the penultimate hidden layer
are read out as an x-vector.

C. Features
• Acoustic features: The acoustic features are 39 mfccs

with a frame-length of 25ms in i-vector system and 40
fbanks in x-vector system.

• English BNFs: The English ASR model is trained by
alignments provided by a standard chain model. 1300h
data is used, and its input features are 40 fbanks. The
ASR DNN has 11 layers, and its total left-context is
21 and right-context is 21. The softmax output layer
computes posteriors for 5297 triphone states. Excluding
the output layer, the DNN has 19.96 million parameters.
we use 256 dimensional BNFs extracted from ASR DNN.

• Chinese BNFs: Chinese ASR model is trained with
3000h data, which architecture is same with English ASR
model except that the posteriors is 5984 triphone states.

We reduce the BNFs from 256 dimensional to 40 dimen-
sional by Principal Component Analysis (PCA) in the i-
vector system. BNFs extractor trained by one language can
learn features to recognize other language. It is important for
language identification in low-resource scenarios.

IV. RESULT

The evaluation standard is the accuracy metric, defined as

Accuracy =
LT

LT + LN
× 100% (1)

where LT and LN are target and non-target languages. In the
following tables, scores of each data source (in-domain data
or out-of-domain data) or language have been balanced and
contribute equally to the metric.

A. Baseline
Our purpose is investigating on how to improve the per-
formance of LID system in low-resource scenarios. we first
implement two state-of-the-art which are i-vector systems and
the x-vector baseline system without phone-aware information
in different duration of training data and different channels of
test set. Mfcc is the input feature of the system iVec mfcc lr.
fbank is the input of the xVec fbank lr. And their back-end
is Logistic regression (LR).

TABLE I
COMPARING THE ACCURACY OF DIFFERENT DURATIONS OF TRAINING
DATA IN IN-DOMAIN AND OUT-OF-DOMAIN. ALL SYSTEMS CONFORM

TO THE FIXED TRAINING CONDITION

Evaluation System 25h 50h 75h 106h

in-domain iVec mfcc lr 71.43 84.00 88.05 90.62
xVec fbank lr 61.70 76.76 82.87 86.34

out-of-domain iVec mfcc lr 31.94 37.28 40.15 37.51
xVec fbank lr 31.05 35.56 37.76 35.48

In TABLE I, we find that the smaller the amount of
training data, the lower the accuracy in the in-domain. And
the accuracy of out-of-domain is much lower than in-domain
on the same training data. In in-domain, compared train 106h
with train 25h, the accuracy decreased sharply from 90.62%
to 71.43% in i-vector system. And the accuracy decreased
sharply from 86.34% to 61.70% in x-vector system. In i-
vector system, compared in-domain with out-of-domain, the
accuracy decreased sharply from 71.43% to 31.94% when
training data is 25h, and the accuracy decreased sharply from
90.60% to 37.51% when training data is 106h. The results
above demonstrate sufficiently the limited training degrading
the performance of LID systems.

B. Data Augmentation
In this section, we test the performance of augmenting the i-
vector and x-vector training data. The system iVec mfcc 2f lr
uses 2-fold additive augmentation, and iVec mfcc 5f lr uses
5-fold combined augmentation. In the systems above, the input
feature is mfcc. The name of x-vector is the same except fbank
instead of the mfcc.
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TABLE II
RESULTS USING DATA AUGMENTATION IN VARIOUS SYSTEMS

Evaluation System 25h 50h 75h 106h

in-domain

iVec mfcc 2f lr 69.89 76.46 87.83 89.25
iVec mfcc 5f lr 72.52 86.54 90.09 91.83
xVec fbank 2f lr 60.51 75.98 80.12 83.31
xVec fbank 5f lr 62.05 76.89 83.07 89.89

out-of-domain

iVec mfcc 2f lr 25.23 31.27 44.94 46.74
iVec mfcc 5f lr 43.31 44.61 44.86 45.36
xVec fbank 2f lr 25.12 28.98 35.29 37.35
xVec fbank 5f lr 33.57 36.43 37.97 43.73

1 2f: 2-fold data augmentation strategy.
2 5f: 5-fold data augmentation strategy.

In TABLE II, we observe that augmentation using 2-fold
significantly degrades in in-domain. The reason maybe is that
the training data is heavily damaged by noise. And the per-
formance without augmentation degrades significantly com-
pared with 5-fold augmentation strategy. Due to augmentation
increasing the amount of limited training data, the system
is more robust against degraded audio. Through the results,
we can see that data augmentation (e.g. 5-fold augmentation
strategy) is effective for low-resource LID task when training
data is not damaged (e.g. 2-fold augmentation strategy).

C. Mono-lingual BNFs
In this session, we first analysis the impact of a mono-lingual
BNFs in this study. Then we compare the performance of
different BNFs extraction layers on LID. Finally, we present
the impact of BNFs on this task by T-SNE [21] visualizing on
the x-vector system.

TABLE III
RESULTS USING ENGLISH BNFS AND CHINESE BNFS IN VARIOUS

SYSTEMS

Evaluation System 25h 50h 75h 106h

in-domain

iVec enbnf lr 93.62 95.38 97.38 97.61
iVec cnbnf lr 96.29 98.53 98.27 98.41
xVec enbnf lr 93.72 97.66 98.31 98.41
xVec cnbnf lr 96.81 98.53 98.65 98.91

out-of-domain

iVec enbnf lr 71.24 73.90 76.72 77.23
iVec cnbnf lr 67.22 69.30 70.80 71.70
xVec enbnf lr 59.13 60.78 61.02 64.22
xVec cnbnf lr 64.51 64.53 66.40 68.99

1 enbnf: BNFs is extracted from English ASR model.
2 cnbnf: BNFs is extracted from Chinese ASR model.

In TABLE III, mono-lingual BNFs are used in the experi-
ment. In in-domain, it shows that the performance of Chinese
ASR model is better than the English ASR model. Because the
Chinese ASR model has more training data and the accuracy
of phone recognizer is higher. But it must be considered that
Chinese belongs to oriental languages while English is not. In
out-of-domain, the performance is opposite in i-vector model.
The results demonstrate that English BNFs is more robust
against domain mismatch in i-vector system. In in-domain,
mono-lingual BNFs is better in x-vector system. However,
i-vector is more robust against domain mismatch, mono-
lingual BNFs is better in i-vector system in out-of-domain.
The accuracy of xVec cnbnf lr is nearly 57% better than the

xVec fbank in in-domain when training data is train 25h. In
out-of-domain, the accuracy of iVec enbnf is 123% better
than iVec mfcc in train 25h. It can be seen that the addition
of phone-aware information greatly solves the low-resource
problem, x-vector system with Chinese BNFs is better in in-
domain, and i-vector system with English BNFs is better in
out-of-domain. And i-vector system is better in out-of-domain,
which is more robust against domain mismatch.

Fig. 3. The effect of varying the position of the BN layer in a ASR DNN
when training data is 25h, under different ASR models

In Fig.3, we compare the effects of different extraction
layers of different ASR models to the LID. Layer output-
xent.linear denotes the last hidden layer of frame level.
Layer output.linear denotes the last hidden layer of word
level. Layer prefinal-l.linear denotes the penultimate layer.
Layer tdnn8l.linear denotes the seventh from the end layer.
Interestingly, it is not the last hidden layer giving the best
performance in the in-domain data, but the layers nearer to the
last. However, it is the last hidden layer of frame level giving
the best performance in the out-of-domain data. Maybe this
layer loses channel information.

T-SNE [21] is to visualize the language features in the 2
dimensional space. Fig.4 shows the impact of BNFs on x-
vector system. In Fig.4.(a), it shows that the learned language
features have intra-class divergence problem in x-vector sys-
tem. In this paper, the BNFs which is phone-aware information
is introduced, so that the linguistic features are compensated
for the prior knowledge of the phoneme in the learning process
to solve the problem of the volatility of the linguistic features
caused by the pronunciation content and the speaker. BNFs
makes each language more convergent and distinguishing in
this task as shown in Fig.4.(b).

D. Multi-lingual BNFs

It has been well documented above that i-vector-based and x-
vector-based LID systems all improve the accuracy greatly by
using the mono-lingual BNFs. In this section, we show the
performance of Multi-language BNFs by comparing systems
trained on English BNFs (iVec enbnf and xVec enbnf) with
Chinese BNFs (iVec cnbnf and xVec cnbnf).
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(a) (b)

Fig. 4. The effect of BNFs on the distribution of the extracted features(best
viewed in color). The figure shows t-sne visualizations of the x-vector
embeddings (a) in case when xVector-fbank, (b) in case when xVector-BNF.

TABLE IV
COMPARING THE ACCURACY OF DIFFERENT DURATIONS OF
TRAINING DATA IN IN-DOMAIN AND OUT-OF-DOMAIN. ALL
SYSTEMS CONFORM TO THE FIXED TRAINING CONDITION

Evaluation System 25h 50h 75h 106h

in-domain

iVec fus1 96.46 98.83 98.94 99.08
iVec fus2 96.41 98.12 98.71 98.83
iVec fus3 97.13 98.64 98.92 99.03
xVec fus1 96.95 98.67 99.01 99.56
xVec fus2 93.88 97.58 98.30 98.50
xVec fus3 97.62 98.98 98.99 99.06

out-of-domain

iVec fus1 64.96 71.12 73.24 75.27
iVec fus2 63.05 70.05 72.13 73.66
iVec fus3 72.38 75.01 77.35 78.92
xVec fus1 55.96 57.94 63.21 65.54
xVec fus2 58.68 61.60 63.63 64.19
xVec fus3 65.02 65.22 68.95 70.14

1 fus1 is appending directly of two BNFs.
2 fus2 is independent input of two BNFs.
3 fus3 is shallow score fusion.

In TABLE IV, we find that in in-domain, both appending
directly and input independently of two BNFs are much better
than mono-lingual BNFs in i-vector system. And in both i-
vector and x-vector system, fus1 is better than fus2 in in-
domain, which is proved that the BNFs extracted by different
ASR model are related. However, either fus1 or fus2 is lower
than mono-lingual BNFs in out-of-domain. It proves that
channel information is following phone-aware information in
fusion of features level. In both in-domain and out-of-domain,
score fusions are quite effective, and can obtain promising
results in both the i-vector and x-vector models.

We find two main advantages with multi-lingual BNFs.
Firstly, these units are defined universally across multiple
languages [22]–[24]. As a result, it alleviates the problem
missing phones in the front-end phone recognizer of PRLM
systems [25]. It enhances the modeling capability by sharing
of speech data from different languages. Secondly, different
acoustic definitions often present complementary discrimina-
tion ability.

V. CONCLUSIONS

In this paper, two approaches are investigated to deal with
the low-resource scenarios in the LID task. Firstly, we find
that 5-fold augmentation is a good choice for LID task in data
augmentation approach. Then, we extend mono-lingual phone-
aware model to multi-lingual bottleneck feature extraction
which is inspired by the advantage and complementarity of

universal speech attributes and language-dependent phonemes.
We find mono-lingual BNFs perform much better than acoustic
features alone, while multi-lingual BNFs are the best choice.
The experiments show that the two approaches are quite
effective on both the i-vector and x-vector models and perform
well in both the in-domain data and the out-of-domain data.
When training data is train 25h, our best model improved
accuracy by 36%, 127% for in-domain data, out-of-domain
data in i-vector system, and by 58%, 109% for in-domain
data, out-of-domain data in x-vector system. In the future, we
will explore which is the best method for the multi-domain
LID.
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