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Abstract—This paper presents a new method for token-by-
token sequence labeling that can leverage not only lexical
information but also speech information without any alignments.
Our motivation is to detect disfluencies such as fillers and word
fragments robustly from spontaneous speech. Disfluency detec-
tion is often modeled as a token-by-token sequence labeling using
a transcribed text via automatic speech recognition. However,
utilizing the lexical information alone is not sufficient because the
disfluencies cause changes to speech information. One problem
is that the speech and the transcribed text need to be aligned
when we handle speech and lexical information simultaneously.
This prevents introducing speech information to the disfluency
detection. To solve this problem, we propose a method for token-
by-token sequence labeling, one that can simultaneously use
lexical and speech information without requiring any alignments.
To this end, we introduce attention mechanisms into a method
for neural sequence labeling based on bi-directional long short-
term memory recurrent neural network conditional random
fields. The attention mechanisms enable us to find the term of
disfluencies from speech automatically. Our experimental results
show that the proposed method using acoustic and prosodic
features improves the labeling accuracy compared with that using
lexical features alone.
Index Terms: disfluency detection, sequence labeling,
BLSTM-CRFs

I. INTRODUCTION

Automatic speech recognition (ASR) systems have been
making great progress and their performance indicates they
have high practical value. ASR systems usually transcribe
speech only for utterance content, but spontaneous speech as
a whole includes rich information. For example, spontaneous
speech often includes disfluencies such as fillers and word
fragments. By giving the labels of these disfluencies to the
texts of ASR output, we can delete unnecessary parts in the
texts and leverage the labels for post-applications including
spoken dialog, speech translation, and speech summarization.

The purpose of this study is to detect disfluencies from
spontaneous speech robustly and to label them to transcribed
text from ASR, as shown in Figure 1. Disfluency detection
is often formulated as a token-by-token sequence labeling
using the text. Conventional methods of disfluency detection
are to use conditional random fields (CRFs)-based classifiers
[1]–[4]. A recurrent neural network-based approaches [5], [6]
have been proposed, and they have provided better perfor-
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Fig. 1. Labeling disfluencies with automatic speech recognition.

mance than the conventional methods. On the other hand, bi-
directional long short-term memory recurrent neural network-
CRFs (BLSTM-CRFs) have provided better performance than
BLSTM in several tasks such as named entity recognition [7]
and part-of-speech tagging [8]. BLSTM enables the model to
capture past and future contexts in the text. CRFs is utilized for
jointly decoding on top of BLSTM to consider the relationship
between output labels. However, with disfluency detection, the
lexical information alone is not sufficient because the disflu-
encies cause changes to speech information. For example, it
is assumed that ambiguous phonemes appear in the utterance
including word fragments and fillers cause changes to prosodic
information.

Unfortunately, the speech and the transcribed text need
to be aligned for handling them simulataneously. Previous
studies utilized segmented prosodic information for disfluency
detection [1], [3]. In other tasks of token-by-token sequence
labeling with speech information, Klejch et al. [9] proposed
an approach for punctuation estimation, one in which speech
and lexical features are simultaneously used with a neural
hierarchical encoder network where the token-level alignments
are given. Wang et al. [10] used a different neural network
topology for discourse marker detection after deciding the
alignments. These studies needed to obtain the alignments with
speech and text. This made it difficult to introduce speech
information to the disfluency detection.

In this paper, we propose a method for token-by-token
sequence labeling that can simultaneously utilize lexical and
speech information without requiring any alignments between
speech and text. In order to use the speech information, our
idea is to introduce attention mechanisms [11]–[13] into a
method for neural sequence labeling based on BLSTM-CRFs.
The attention mechanisms automatically find the terms of dis-
fluencies from speech. Our proposed method leverage lexical
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Fig. 2. Token-by-token sequence labeling with BLSTM-CRFs. This figure is
an example of labeling to a token ci.
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Fig. 3. Speech-aware text-based sequence labeling with BLSTM-CRFs and
attention mechanisms. This figure is an example of labeling to a token ci.

and speech information efficiently for detecting disfluencies
and labeling them to texts.

We evaluate our proposed method with using a Japanese lec-
ture task with the Corpus of Spontaneous Japanese (CSJ) [14].
Experimental evaluations show that the attention mechanisms
enable the effective use of acoustic and prosodic features. We
found that the speech features increase the accuracy of the
disfluency detection.

This paper is organized as follows. Section 2 describes
a method of token-by-token sequence labeling based on
BLSTM-CRFs. Section 3 details our proposed method based
on BLSTM-CRFs and attention mechanisms. The experiments
are shown in Section 4. Section 5 concludes the paper.

II. TOKEN-BY-TOKEN SEQUENCE LABELING
WITH BLSTM-CRFS

In this section, we describe token-by-token sequence la-
beling with BLSTM-CRFs. The task of token-by-token se-
quence labeling is finding the most probable label sequence
l̂ = {l1, l2 · · · , li, · · · , lI} given a token sequence c =
{c1, c2, · · · , ci, · · · , cI}. This problem is formulated as

l̂ = arg max
l

P (l|c;Θ), (1)

where l = {l1, l2 · · · , li, · · · , lI} denotes a label sequence,
and where Θ is the parameters of a model for token-by-token
sequence labeling.

BLSTM-CRFs is known as a model for token-by-token
sequence labeling. Figure 2 illustrates BLSTM-CRFs, which
estimate a label li for a token ci. In BLSTM, each token ci
in a token sequence c is encoded to 1-of-K representation and
embedded into a continuous representation as

di = EMBED(ci,θd), (2)

where EMBED(·) is a function that converts a token into a dis-
tributed representation, and where θd is a trainable parameter.
Then, embedded vectors are input to bi-directional LSTM as

−→
h i =

−−→
LSTM(di,

−→
h i−1,θlf ), (3)

←−
h i =

←−−
LSTM(di,

←−
h i+1,θlb), (4)

where
−−→
LSTM(·) and

←−−
LSTM(·) represent LSTM functions of for-

ward and backward LSTM. θlf and θlb are the trainable model
parameters. The hidden state hj is calculated by concatenating−→
h j and

←−
h j as

hi = [
−→
h⊤

i ,
←−
h⊤

i ]
⊤. (5)

The concatenated vector hi is converted into a vector as

oi = g(hi,θo), (6)

where g(·) is the function of linear transformation and θo is the
model parameter. The conditional probability of l is calculated
as

P (l|c;Θ) =

∏I
i=1 φ(li−1, li,oi;θp)∑

l̄

∏n
i=1φ(l̄i−1, l̄i,oi;θp)

, (7)

where φ(·) represents the function to multiply weight parame-
ters and outputs of LSTM layers with an exponential function,
and where θp is the parameter. Finally, a label sequence is
obtained to maximize the probability as Eq. (7). The most
probable label sequence can be obtained through the Viterbi
algorithm.

The trainable parameters can be summarized as

Θ = {θd,θlf ,θlb,θo,θp}. (8)

The parameters are optimized to maximize the probability of
correct label sequence l giving token sequence c.

L(Θ) = −
∑

(l′,c′)∈D

logP (l′|c′;Θ), (9)

where D is training data. The training data D can be described
as

D = {(c1, l1), (c2, l2), · · · , (cN , lN )} , (10)

where N is the number of pairs of tokens and labels in the
training data.
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III. SPEECH-AWARE TOKEN-BY-TOKEN
SEQUENCE LABELING

The task given in this study is finding the most probable
label sequence l̂ given an speech feature sequence x =
{x1, x2 · · · , xj , · · · , xJ} and a token sequence c. This prob-
lem is formulated as

l̂ = arg max
l

P (l|c,x;Θ), (11)

where l = {l1, l2 · · · , li, · · · , lI} denotes a label sequence,
and where Θ is the parameters of a model for speech-aware
token-by-token sequence labeling.

Figure 3 illustrates a model of the speech-aware token-by-
token sequence labeling, which estimates a label li for a token
ci. The model has three networks, which are a network for
speech features, lexical features, and sequence labeling. In the
network for speech features, the speech feature sequence x =
{x1, x2 · · · , xj , · · · , xJ} is input to the BLSTM as

−→s j =
−−→
LSTM(xj ,

−→s j−1,θlf ), (12)
←−s j =

←−−
LSTM(xj ,

←−s j+1,θlb), (13)

where θlf and θlb are the trainable model parameters. The
hidden state sj is calculated by concatenating −→s j and ←−s j as

sj = [−→s ⊤
j ,
←−s ⊤

j ]
⊤. (14)

In the network for lexical features, Distributed repre-
sentation di is calculated in the network for lexical fea-
tures using the weight matrix given target sentence c =
{c1, c2, · · · , ci, · · · , cI} as

di = EMBED(ci,θd). (15)

The hidden state is calculated in the network for labeling using
the LSTM function as

−→
hi =

−−→
LSTM([di,

−→v i],
−→
h i−1,θfs), (16)

←−
hi =

←−−
LSTM([di,

←−v i],
←−
h i+1,θbs), (17)

where −→v i] and ←−v i] are the context vector constructed in each
input token. The context vector −→vi for the forward direction
is caclulated as

−→v i =
J∑

j=1

−→α j,i
−→s j , (18)

where the attention weight −→α j,i is calculated as

−→α j,i =
exp(−→e j,i)∑J
j=1 exp(

−→e j,i)
. (19)

In this study, we investigated two types of attention mecha-
nisms: content-based [11] and location-based [13] attention. In
addition, we used uniform distribution for the attention weight
as a comparison (“No-attention”). For each method, −→e j,i in
Eq. (19) is calculated as



Location-based attention :
−→
f j =

−→
F ∗ −→α j−1,

−→e j,i = Score(−→s i,
−→
h j ,
−→
f j,i,θfe),

Content-based attention :
−→e j,i = Score(−→s i,

−→
h j ,θfe),

No-attention :
−→e j,i = 0,

(20)

where Score(·) is the nonlinear function with additive opera-
tions, where −→s i is the hidden state of the forward direction in
the labeling network, “∗” indicates the convolutional function,
and where F and θfe are the trainable model parameters.
For the backward direction, ←−vi , ←−α j,i, and ←−e j,i are calculated
in the same manner as Eq. (18-20). The hidden state hi is
calculated by concatenating

−→
h i and

←−
h i as

hi = [
−→
h⊤

i ,
←−
h⊤

i ]
⊤. (21)

The concatenated vector hi is converted into a vector as

oi = g(hi,θo), (22)

where θo is the model parameter. Given the symbol sequence
c = {c1, · · · , cI}, the probability of l is calculated as

P (l|c,x;Θ) =

∏I
i=1 φ(li−1, li,oi;θp)∑

l̄

∏n
i=1φ(l̄i−1, l̄i,oi;θp)

, (23)

where θp is the parameter. Finally, the most probable label
sequence is obtained to maximize the probability as Eq.
(23.) The label sequence can be obtained through the Viterbi
algorithm.

The trainable parameters are summarized as

Θ = {θlf ,θlb,θfe,θbe,θd,θfs,θbs,θo,θp,F }. (24)

In the training, they are updated to maximize the conditional
probability of the correct label when giving speech features
and tokens. Thus, the model parameters are optimized by
maximizing the probabilities as

L(Θ) = −
∑

(l′,c′,x′)∈D

logP (l′|c′,x′;Θ), (25)

where D is the sets of labels, tokens, and speech features.
Unlike the method in Section II, speech features are given
in this problem. We used acoustic information and prosodic
information as the speech features x′. We assumed that acous-
tic and prsodic information enable us to capture ambiguous
phonemes appear in the utterance including word fragments
and fillers cause changes to prosodic information.

IV. EXPERIMENTS

A. Setups

1) Data: We used Japanese lecture corpus of the CSJ
to evaluate our models with disfluency sequence labeling of
begin, inside, and outside labels. speech and its manual tran-
scription with disfluency labels. Table I shows examples of the
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TABLE I
EXAMPLE OF BIO LABELS OF A SENTENCE IN JAPANESE DATASET. “今日の天気は晴れ” MEANS “IT’S SUNNY TODAY”. THE TARGET LABELS WERE

BEGIN-FILLER (B-F), INSIDE-FILLER (I-F), BEGIN-WORD FRAGMENT (B-WF), INDIDE-WORD FRAGMENT (I-WF) AND OTHER (O). “えー” IS ONE OF
THE JAPANESE FILLERS AND “きょ” IS A WORD FRAGMENT DERIVED FROM THE WORD “今日”.

Text え ー き ょ 今 日 の 天 気 は 晴 れ
BIO labels B-F I-F B-WF I-WF O O O O O O O O

TABLE II
DETAILS OF TRAINING, DEVELOPMENT, AND TEST DATA

Data # of characters # of sentences Hours
Training 5M 149K 268
Development 53K 2K 3
Test 88K 3K 5

TABLE III
THE NUMBER OF DISFLUENCIES IN TRAINING, DEVELOPMENT AND TEST

DATA.

Data Fillers Word fragments
Training 203K 42K
Development 2029 536
Test 2749 701

BIO labels in a sentence of the CSJ. We used character-level
labeled texts because they are independent of morphological
analysis and have a small vocabulary. The test data were CSJ
standard evaluation set 1 and 2. The target disfluency labels
were fillers and word fragments. Table II shows the details of
the training, development and test data and Table III shows
the number of BIO labels in the dataset. Because the number
of word fragments was much lower than the number of fillers,
the detection of word fragments was a more difficult task.

2) Models: All sequence labeling models predicted the
labels for each character in a sentence. The vocabulary size
of our models was 2748 characters, which corresponded to
the input dimension of the network for lexical information.
The BLSTM in the network of label prediction had three
hidden layers and 320 LSTM units in each layers and each
directions. When we used speech features, the network for
speech features had four hidden layers and 320 LSTM units in
each layers and each directions. The content-based or location-
based attention was used for forward and backward directions.
The number of the target labels was five which are begin-
filler (B-F), inside-filler (I-F), begin-word fragment (B-WF),
indide-word fragment (I-WF) and other (O). We used the
AdaDelta algorithm [15] to optimize the model parameters
and performed early stopping using the labeling accuracy of
the development set.

3) Input features: We prepared lexical, acoustic, prosodic
features as input speech information for speech-aware token-
by-token sequence labeling. We used 1−of−K representation
of characters for the lexical features. We used 40 mel-scale
filter-bank features and their delta and delta-delta as acoustic
features. The acoustic features are totaly 120-dimensional
vectors in each time frame. We used 3-dimensional prosodic
features that are a warped normalized cross correlation func-

tion, log-pitch with a probability of voicing-weighted mean
subtraction and the estimated delta of the raw log pitch.
When both acoustic and prosodic features were used for input,
we concatanated both features into one vector. In total 123-
dimentional features were input in each time frame.

B. Results

Table IV shows the precision, recall, and F1 scores of fillers
and word fragments when using different input features. We
can see that the sequence labeling performance improved using
acoustic features, and further improvement was also obtained
with the prosodic features. These results indicate some fillers
and word fragments could not be labeled using only lexical
information. The acoustic and prosodic features can help the
models to detect and label these disfluencies.

Table V shows the F1 scores of fillers and word frag-
ments for different attention types. “No-attention” represents
the model that used a uniform distribution for the atten-
tion weights. We evaluated content-based and location-based
attention models using the F1 scores of fillers and word
fragments. In this experiment, lexical, acoustic, and prosodic
features were used for all models. The results were that all
attention-based models provided improvement over the “No-
attention” model. The attention mechanism appears to have
worked effectively to emphasize speech features related to the
disfluencies. Among them, location-based attention showed the
best F1 score of both fillers and word fragments

V. CONCLUSION

This paper presented a method of neural network-based
token-by-token sequence labeling for disfluency detection, one
that which utilizes both speech and lexical information with-
out any alignments between speech and text. We introduced
attention mechanisms into the method for sequence labeling
based on BLSTM-CRFs to handle both speech and lexical
information. In our proposed method, the attention-based
network emphasizes the speech features related to disfluencies.
Experimental evaluations were conducted in sequence labeling
task based on BIO labels of fillers and word fragments in
Japanese spontaneous speech. In the experiments, the attention
mechanism enabled improvement in the sequence labeling
performance. We performed experiments with different input
features: lexical, acoustic, and prosodic features. The best
F1 scores were obtained when lexical, acoustic and prosodic
features were utilized for input. Future work includes labeling
the disfluencies to the ASR hypotheses and applying our
proposed method to other disfluencies such as laughter and
emphases.
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TABLE IV
PRECISION, RECALL AND F1 SCORES OF FILLERS AND WORD FRAGMENTS WITH DIFFERENT MODELS.

Input features Filler Word fragmant
Lexical Acoustic Prosodic Precision Recall F1 Precision Recall F1

✓ 94.76 91.69 93.20 54.07 67.08 59.87
✓ ✓ 95.23 91.81 93.49 53.98 69.80 60.88
✓ ✓ 95.11 91.80 93.43 54.77 69.63 61.31
✓ ✓ ✓ 95.09 92.72 93.89 55.71 69.54 61.86

TABLE V
F1 SCORES OF FILLERS AND WORD FRAGMENTS WITH DIFFERENT

ATTENTION TYPES. LEXICAL, ACOUSTIC AND PROSODIC FEATURES WERE
USED FOR ALL MODELS.

Attention type Filler Word fragment
No-attention 93.11 59.88
Content-based-attention 92.70 61.64
Location-based attention 93.89 61.86
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