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Abstract—In hospitals, brain-related disorders such as 
Parkinson’s disease (PD) could be diagnosed by analyzing 
electroencephalograms (EEG). However, conventional EEG-
based diagnosis for PD relies on handcrafted feature extraction, 
which is laborious and time-consuming. With the emergence of 
deep learning, automated analysis of EEG signals can be realized 
by exploring the inherent information in data, and outputting 
the results of classification from the hidden layer. In the present 
study, four deep learning algorithm architectures, including two 
convention deep learning models (convolutional neural network, 
CNN; and recurrent neural network, RNN) and two hybrid 
convolutional recurrent neural networks (2D-CNN-RNN and 
3D-CNN-RNN), were designed to detect PD based on task-state 
EEG signals. Our results showed that the hybrid models 
outperformed conventional ones (fivefold average accuracy: 3D-
CNN-RNN 82.89%, 2D-CNN-RNN 81.13%, CNN 80.89%, and 
RNN 76.00%) as they combine the strong modeling power of 
CNN in temporal feature extraction, and the advantage of RNN 
in processing sequential information. This study represents the 
an attempt to use hybrid convolutional recurrent neural 
networks in classifying PD and normal take-state EEG signals, 
which carries important implications to the clinical practice.  

Keywords-deep learning; EEG; classification; Parkinson’s 
disease 

I. INTRODUCTION 

Parkinson’s disease (PD) is a common neurodegenerative 
disorder [1], affecting more than 1% of the population over 50 
years old with increasing prevalence year by year [2]. Typical 
symptoms associated with PD include tremor, muscle rigidity, 
postural instability, bradykinesia (slowness of movement), 
and dysphonia (voice disorders) [3], due to the degeneration 
of dopaminergic neurons in the substantia nigra pars 
compacta of the basal ganglia. These clinical motor symptoms, 
together with non-motor symptoms, are usually the basis of 
conventional diagnosis. With recent advances in neuroscience, 
new tools such as electroencephalography (EEG), become 
potentially applicable for the detection of PD. 

EEG-based diagnosis is easy to set up, non-invasive in 
nature, and provides high temporal resolution. However, 
traditional diagnosis is based on manual analysis, which 

precludes its application to a large volume of data. 
Fortunately, advances in classification renders the automated 
analysis of EEG signals realizable. Yuvaraj and colleagues [4] 
extracted higher-order spectra (HOS) features from resting-
state EEG signals, which were fed to various classifiers, 
including decision tree (DT), fuzzy K-nearest neighbor 
(FKNN), K-nearest neighbor (KNN), naïve Bayes (NB), 
probabilistic neural network (PNN), and support vector 
machine (SVM). Despite obtaining an optimal mean accuracy 
of 99.62% to differentiate PD patients from their healthy 
counterparts, handcrafted HOS features are time-consuming 
to extract, and requires highly trained clinicians or 
neurologists. A more devastating drawback is the loss of 
spatial and temporal information during feature extraction. 

A step forward towards the automated analysis of EEG 
signals could be achieved by unsupervised feature learning 
based on the deep learning model. Wen and Zhang [5] 
constructed the deep convolution network and autoencoders-
based model (AE-CDNN) to extract feature representations 
from unlabeled EEG in epilepsy patients and healthy controls. 
Features were also obtained by principal component analysis 
and sparse random projection. Different common classifiers, 
including KNN, SVM, DT, NB, random forest (RF), 
multilayer perceptron (MLP), and AdaBoost algorithm (ADB), 
were applied to verify the effectiveness of features extracted. 
The results showed that the classification accuracies based on 
unsupervised feature learning from AE-CDNN were the 
highest, and were not inferior to the results of other studies. 

Compared with conventional classifiers, deep neural 
networks have strong modeling power to explore the inherent 
information in data, and can be directly applied for 
classification. Because of that, researchers have attempted to 
use deep learning algorithms for automated analysis of EEG 
data. Schirrmeister et al. [6] evaluated convolutional neural 
network (CNN) of different architectures with different 
design choices against a widely used baseline method, filter 
bank common spatial patterns (FBCSP) which revealed that 
CNN could achieve at least as good performance as FBCSP 
(mean decoding accuracies FBCSP 82.1%, CNN 84.0%). The 
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same algorithm architecture was also applied to distinguish 
pathological from normal EEG recordings in the Temple 
University Hospital (TUH) EEG Abnormal Corpus [7], which 
reached substantially better accuracies than best reported 
results for this dataset (about 6% better, 85% vs. 79%). It is 
worth mentioning that both studies visualized the learned 
features, demonstrating that CNN indeed learned to use 
spectral power changes in different frequency bands for the 
decoding decision. Roy et al. [8], on the other hand, evaluated 
the performance of a number of algorithms, including 1D-
CNN, 2D-CNN, deep 1D convolutional gated recurrent neural 
network (1D-CNN-RNN), and time-distributed convolutional 
recurrent neural network (TCNN-RNN) on different 
representation input (time-series, spectrogram, and Gramian 
Angular Fields; GAF) for the same dataset. As reported, the 
best performance was obtained by directly feeding the time-
series data to 1D-CNN-RNN, achieving a 3.47% increase 
compared to previously reported accuracies. Besides, a hybrid 
convolutional recurrent network architecture has been applied 
to a brain computer interface (BCI) [9], in which the input 
EEG signal was fed to RNN and CNN structure for temporal 
and spatial feature learning in parallel. The learned features 
were then stacked for feature transformation, and were input 
to the classifier. The hybrid architecture yielded an accuracy 
of 95.53%, which is significantly higher than any other state-
of-the-art methods. 

Deep neural networks have been employed to the detect 
PD automatically (e.g., Oh et al., [10] employed a thirteen-
layer CNN architecture). However, most studies used EEG 
signals collected in resting state. Given that PD is 
characterized by the gradual degradation of motor function, 
and the loss of dopaminergic neurons in basal ganglia will 
compromise its control over speech. Considerable studies, 
including one conducted by our lab [11], have found that 
patients with PD are associated with deficits in auditory-
motor integration for vocal pitch regulation. Specifically, 
patients with PD exhibited abnormal compensation (i.e., 
larger vocal response peak) when they heard their vocal pitch 
unexpectedly shifted upward or downward. At the cortical 
level, larger P2 responses during pitch perturbation were 
induced by enhanced activity in the superior and inferior 
frontal gyrus, premotor cortex, inferior parietal lobule, and 
superior temporal gyrus. Since there are significant 
differences in the cortical responses between PD patients and 
healthy controls, we speculate that implementing deep neural 
networks to the task-state EEG data would better differentiate 
pathological from normal population. 

In the present study, four deep learning algorithm 
architectures were designed to tackle the task of EEG 
detection for PD. The first two models are single CNN and 
RNN, which are compared to the hybrid convolutional 
recurrent neural network. Combining advantages of both 
CNN and RNN, we hypothesize that the hybrid model will 
yield higher accuracies for classification. 
 
 

II. DEEP LEARNING ARCHITECTURES 

Four deep learning architectures were designed in this 
study to tackle the task of EEG decoding. In this section, we 
first explain the basic ideas of CNN and RNN, followed by a 
description of the four models used in this study. It is worth 
noting that all the four models used raw data as input, and the 
first one (i.e., CNN [6]) served as a baseline model. At the 
end of this section, we describe how to represent the EEG 
input for these models, as well as the training strategy. 

A. Convolutional Neural Network 

Three basic layers are stacked together to build a CNN: 
convolution layer, pooling layer, and fully connected (dense) 
layer [12, 13]. First of all, the input signal is connected to the 
convolution layer to perform convolution operation using a 
kernel (window) [14]. Results of the operation are generated 
as a feature map for the next layer. Between two convolution 
layers, a pooling layer is used to reduce the size of the feature 
map, and hence enables faster computation. Every neuron of 
the pooling layer is connected to every neuron in the fully 
connected layer, where high-level features were used to 
classify the input signal into various classes [15, 16].  

B. Recurrent Neural Network 

Compared with conventional feedforward network 
architectures, RNN has inherently strong modeling power to 
learn sequential information, as neurons send feedback signals 
to the other neurons in the same hidden layer (i.e., the input of 
the hidden layer considers the output from the preceding time 
steps), which provides RNN with the memory from the states 
in the history [17]. Our model takes the time series input 
signals from the previous temporal information using gated 
recurrent unit (GRU) [18]. 

C. Deep Neural Network Architecture 

Table I shows the internal details of all layers in each 
architecture. 
 CNN: Following [6], the first architecture was a 

CNN with convolution-max-pooling structure, in 
which the first two convolutional layers were 
designed to handle EEG input, followed by two 
pooling-convolutional layers, two fully connected 
layers and a softmax classification layer (Fig. 1A). 
Specifically, the kernel in the first layer performs a 
convolution over time, and the kernel in the second 
layer performs a spatial filtering over electrodes. 

 RNN: Our study [11] has revealed that PD patients 
elicit larger P2 responses during pitch perturbation. 
To classify input signals on the basis of temporal 
information, RNN was designed by splitting the raw 
data to 700 steps, with each step containing 64 units 
(i.e., step length). The outputs of the last 20 steps’ 
states from the RNN module were fed to fully 
connected layers, and then softmax layer for 
classification (Fig. 1B). 

 2D-CNN-RNN: We took advantage of the CNN 
structure for spatial information extraction and 
employed the RNN structure for its strong modeling 
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power to explore temporal relevance in time-series 
data by designing a hybrid convolutional recurrent 
neural network. The CNN structure includes one 
layer, in which the kernel performs a spatial filtering 
over electrodes. The output feature map was then fed 
to the RNN structure, which includes 350 steps, with 
each step containing 40 units (i.e., step length). The 
outputs of the last 50 steps’ states from the RNN 
structure were fed to fully connected layers, and 
finally softmax classification layer (Fig. 1C). 

 3D-CNN-RNN: To better process spatial 
information, a more sophisticated hybrid 
convolutional recurrent neural network was applied. 
Compared with 2D-CNN-RNN, the CNN structure 
was designed with two convolutional layers. In the 
first layer, the kernel performs a convolution over 
time, and in the second layer, the convolution 
operation is performed on the 3D feature map, which 
could better extract spatial feature compared with 
2D-CNN-RNN. All the other structures are exactly 
the same as in 2D-CNN-RNN (Fig. 1D). 

D. Input Representation 

EEG can be represented as a time series of 
topographically organized images (i.e., voltage distributions 
across the scalp surface). Thus, a number of studies have 
taken the power spectra of EEG decoding as an input of CNN 
(e.g., [19]). The rationale of applying spatial filters to the 
global pattern is based on the assumption that EEG signals 
approximate a linear superposition of spatially global voltage 
patterns caused by multiple dipolar current sources in the 
brain [20]. In this view, however, the hierarchical 
compositionality of local and global EEG modulations in 
space could hardly be observed. Considering that EEG also 
preserves temporal hierarchies of local and global 
modulations (e.g., in nested oscillations [21-23]), the CNN 
can be designed to learn spatially global unmixing filters in 
the entrance layers, and temporal hierarchies in the deeper 
layers. Following [6], we represented the input as a 2-
dimensional array with the number of time steps (700) as the 
width and the number of electrodes (64) as the height. Further 
advantage of this approach is that it reduces the input 
dimensionality compared with treating EEG as a time series 
of image 

E. Training Strategy 

Training and testing were carried out for each model. 
During training, fivefold cross-validation (CV) was used, in 
which the EEG data obtained from 40 PD patients (4000 
trials; details of the data are introduced in the Section “EEG 
Data Acquisition and Preprocessing”) and 30 healthy controls 
(HC; 3000 trials) were split into five uniform portions. Out of 
the five portions, four were used to train the model, and the 
rest were kept for testing. This procedure was iterated five 
times, producing datasets denoted CV1-CV5. Trials obtained 
from the same participant were involved in either training or 
testing phase, and would not be used in both phases. For each 
dataset, the designed model underwent five training rounds, 

and the result of each training round were used to calculate 
the accuracy and standard deviation (SD). 

TABLE I.  PARAMETERS  OF THE FOUR MODELS 

Model Hyper-parameter Value 

CNN 

1st convolution Filter [1,26], stride [1,1], depth 40 

2nd convolution Filter [64,40], stride [1,1], depth 40 

1st max-pooling Filter [1,3], stride [1,3] 

3rd convolution Filter [40,26], stride [1,1], depth 80 

2nd max-pooling Filter [1,4], stride [1,4] 

4th convolution Filter [80,11], stride [1,11], depth 100 

Fully connected 1000+500 

RNN 

Steps × step length 700×64 

RNN neural size 6×64 

Fully connected 1280+300 

2D-CNN-
RNN 

1st convolution Filter [64,2], stride [1,2], depth 40 

Steps × step length 350×40 

RNN neural size 6×40 

Fully connected 2000+300 

3D-CNN-
RNN 

1st convolution Filter [1,26], stride [1,1], depth 40 

2nd convolution Filter [64,40], stride [1,1], depth 40 

1st max-pooling Filter [1,3], stride [1,3] 

Steps × step length 225×40 

RNN neural size 6×40 

Fully connected 2000+300 

Shared 
Parameters 

Batch size 100 

Input size 64×700 

Learning rate 0.001 

Activation function ReLU 
Classification 
function 

Softmax 

Optimization 
function 

Adam optimization 

III. EEG DATA ACQUISITION AND PREPROCESSING 

A. Participants 

Forty participants with PD (15 females and 25 males; 
mean age = 63.53, SD = 4.95) and 30 age-matched HC (12 
females and 18 males; mean age = 64.72, SD = 5.74) were 
recruited for the experiment. Each participant passed a 
bilateral screening test to verify the hearing status. Informed 
consent was obtained from all participants and the study was 
approved by the institutional board for human research of The 
First Affiliated Hospital at Sun Yat-sen University in 
accordance with the Code of Ethics of the World Medical 
Association (Declaration of Helsinki). 

B. Experimental Setup 

The experiment was carried out in a sound-attenuated 
booth. Participants heard their self-voice feedback with a gain 
of 10 dB sound pressure level (SPL) relative to their vocal 
output. Participants were instructed to produce the vowel /u/ 
for approximately 5-6 seconds at their conversational pitch 
and loudness level, while listening to their voice unexpectedly 
pitch-shifted upwards 200 cents (100 cents = 1 semitone). 
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During each vocalization, 5 pitch shifts (200 ms duration) 
were presented with an inter-stimulus interval (ISI) of 700-
900 ms and the first one occurred 500-1000 ms after the vocal 
onset. Participants produced 40 consecutive vocalizations, 
resulting in 100 +200-cent trials. 

Participant’s voice was picked up by a dynamic 
microphone (model DM2200, Takstar Inc.), amplified by a 
MOTU Ultralite Mk3 firewire audio interface, and pitch-
shifted by the Harmonizer controlled by a MIDI program 
(Max/MSP, v.5.0 by Cycling 74). The pitch-shifted signals 
were finally amplified by an ICON NeoAmp headphone 
amplifier and fed back to participants through insert 
earphones (ER1-14 A, Etymotic Research Inc.). The 
transistor-transistor logic (TTL) pulses were generated to 
mark the onset of each pitch perturbation, and sent to the EEG 
recording system via a synch DIN cable. The original and 
pitch-shifted voice signals as well as the TTL pulses were 
digitized with a sampling frequency of 10 kHz by a PowerLab 
A/D converter (model ML880, AD Instruments), and 
recorded using LabChart software (v.7.0 by AD Instruments). 

C. EEG Data Online and Offline Processing 

The EEG data were recorded using a 64-electrode 
Geodesic Sensor Net (Electrical Geodesics Inc.) with 1 kHz 
sampling rate and referenced against the vertex (Cz). The 
signals were amplified by a Net Amps 300 amplifier 
(Electrical Geodesics Inc.) and recorded onto a Macintosh 
computer. During the online recording, impedances of 
individual sensors were kept below 50 kΩ. 

Offline signal processing was carried out using NetStation 
software. Raw data were band-passed filtered (1-20 Hz) and 
segmented with a window of -200 ms before and 500 ms after 

the onset of the pitch shift. Data were then re-referenced to 
the average of the electrodes on each mastoid, and baseline-
corrected. Recorded trials with excessive muscular activity, 
eye blinks, or other activities beyond the range of -50 to 50 μv 
were rejected. We used this relatively simple method as a 
large number of trials were available. 

IV. RESULTS AND DISCUSSION 

Table II shows the performance of each model (accuracy 
and SD) in each dataset (i.e., CV1-CV5) respectively. As can 
be seen, 3D-CNN-RNN yielded the highest accuracy (fivefold 
average 82.89%) among the four models, followed by 2D-
CNN-RNN (81.13%), CNN (80.89%), and RNN (76.00%). 
Our results suggested that hybrid models (3D-CNN-RNN and 
2D-CNN-RNN) were superior than single CNN and RNN 
models, as the former employed a vertical learning method, 
which combined the strong modeling power of CNN in 
temporal feature extraction, and the advantage of RNN in 
processing sequential information. Specifically, the more 
sophisticated hybrid model (3D-CNN-RNN) performed better 
than the one with a simpler CNN structure (2D-CNN-RNN), 
probably because the two convolutional layers could better 
learn spatial features of EEG input signals. Our RNN model, 
though not as good as the other models, reached an accuracy 
above 75%, indicating that temporal information could be 
used to differentiate PD from normal EEG signals. The result 
also provided further evidence to our previous findings in [11]. 
Finally, it is worth mentioning that compared with single 
CNN, the other three models employed much fewer 
hyperparameters, which substantially saved computational 
resources. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(A) CNN (B) RNN 

HC 
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Figure 1.  Four deep learning architecture (A) CNN, (B) RNN, (C) 2D-CNN-RNN, (D) 3D-CNN-RNN 

TABLE II.  CLASSIFICATION ACCURACY AND STANDARD DEVIATION OF THE FOUR DEEP LEARNING MODELS (%) 

Accuracy 

Model CV1 CV2 CV3 CV4 CV5 Fivefold Average 

CNN 89.46 84.10 89.60 68.08 73.20 80.89 

RNN 81.63 76.31 81.87 64.73 75.44 76.00 

2D-CNN-RNN 87.93 83.76 89.54 69.67 74.73 81.13 

3D-CNN-RNN 89.29 85.63 93.17 71.17 75.19 82.89 

Standard Deviation 

Model CV1 CV2 CV3 CV4 CV5 Fivefold Sum 

CNN 1.34 2.56 3.23 4.97 2.29 14.40 

RNN 2.26 6.01 3.15 6.69 2.03 20.14 

2D-CNN-RNN 2.73 5.50 5.11 2.75 2.99 19.08 

3D-CNN-RNN 1.66 1.59 2.43 2.27 1.64 9.60 

 
We did notice the variance of accuracies across fivefold 

datasets, which may stem from individual differences in 
cortical responses instead of the group-specific traits. We 
rechecked the data carefully, and found that trails of some 
participants in the test set have significantly different cortical 
responses compared with those from the same group, which 
may confuse the classifier. Another limitation of the present 
study is the imbalance and relatively small amount of data in 
PD and HC group, as deep learning is sensitive to data 
disparity. Therefore, the four models may not unlock their 
potentials to be deep learning algorithms with a large number 
of hyperparameters. 

Future research will be conducted based on larger and 
more balanced datasets between PD and HC group. Besides, 
with the technique of visualization and the attention 
mechanism, we aim to unfold the topography of the causal 
contributions of features learned by the algorithm, which 
provides useful tools for task-related brain mapping in the 
temporal and spatial domain. 

V. CONCLUSION 

In the present study, we designed four deep learning 
algorithm architectures—two convention deep learning 

(C) 2D-CNN-RNN (D) 3D-CNN-RNN 
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models (CNN and RNN) and two hybrid convolutional 
recurrent neural networks (2D-CNN-RNN and 3D-CNN-
RNN)—to tackle the task of PD detection based on EEG 
signal. The results showed that our models outperform the 
conventional deep learning models. The present study 
highlights the potential of deep learning algorithms for 
automated classification of raw EEG data without handcrafted 
features, which introduces a new perspective to facilitate 
clinical decision making. 
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