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Abstract—Most speech enhancement (SE) systems focus on the 
spectral feature or raw-waveform enhancement. However, many 
speech-related applications rely on other features rather than the 
spectral features, such as the intensity and fundamental 
frequency (f0). Therefore, a unified feature enhancement for 
different types of features is worth investigating. In this work, we 
train our neural network (NN)-based SE system in a manner 
that simultaneously minimizes the spectral loss and preserves the 
correctness of the intensity and f0 contours extracted from the 
enhanced speech. The idea is to introduce an NN-based feature 
extractor to the SE framework that imitates the feature 
extraction of Praat. Then, we can train the SE system by 
minimizing the combined loss of the spectral feature, intensity, 
and f0. We investigate three bidirectional long short-term 
memory (BLSTM)-based unified feature enhancement systems: 
fixed-concat, joint-concat, and multi-task. The results of the 
experiments on the Taiwan Mandarin hearing in a noise test 
dataset (TMHINT) demonstrate that all three systems show 
improved intensity and f0 extraction accuracy without 
sacrificing the perceptual evaluation of the speech quality and 
short-time objective intelligibility scores compared with the 
baseline SE system. Further analysis of the experimental results 
shows that the improvement mostly comes from better f0 
contours under difficult conditions such as low signal-to-noise 
ratio and nonstationary noises. Our work demonstrates the 
advantage of the unified feature enhancement and provides new 
insights for SE. 

I. INTRODUCTION 

Various speech-related applications are currently flourishing. 
Ensuring the performance of these applications in a variety of 
noise environments has become an urgent need. As a pre-
processing step in the speech input, speech enhancement (SE) 
techniques have been widely applied in speech-related 
applications such as the noise-robust automatic speech 
recognition (ASR) [1, 2, 3, 4], assistive listening [5, 6, 7, 8], 
speech coding [9, 10], and speaker verification [11, 12] 
systems. Recently, neural network (NN) models have been 
introduced as a fundamental model for the SE task [13, 14]. 
Owing to their good nonlinear mapping capability, NN-based 
SE methods have achieved outstanding performance. 
Numerous works apply different NN models to SE, such as 
the deep fully connected NN [15], deep denoising 
autoencoder (DDAE) [16], recurrent NN [17, 18], long short-
term memory (LSTM) [17, 18], and convolutional NN [19, 

20]. For most NN-based SE works [16, 17, 19], the speech 
waveform is first converted to a spectral-feature sequence, 
and a noisy-to-clean mapping process is carried out in the 
spectral domain. Accordingly, the main objective of these SE 
tasks is to minimize the distance between the enhanced and 
clean spectral features. 

The success of an SE system depends on whether it can 
provide benefit to noise-robust speech-related applications. 
However, most speech applications rely not only on the 
spectral features but also on other features such as the 
prosodic features. For a voice conversion (VC) system, in 
addition to the spectral features (e.g., mel-cepstral 
coefficients), fundamental frequency (f0) and aperiodicity are 
important features that need to be considered [21, 22]. Tranter 
et al. [23] reported that in a prototypical speaker-diarization 
system, accurate voice activation detection (VAD) and gender 
recognition can yield high diarization performance, and they 
rely on the intensity and f0 features [24]. In a speech emotion-
recognition task, prosodic features such as energy, f0, and 
duration usually play an important role in the recognition 
accuracy [25]. 

In addition, many studies have confirmed the effectiveness 
of incorporating prosodic features to provide complementary 
information for enhancing the main task of interest. In the 
study by Lin et al. [26], a hierarchical prosodic model was 
constructed to facilitate accurate tone information to improve 
the Mandarin ASR. Ghannay et al. [27] combined different 
word embeddings with prosodic features for ASR error 
prediction. For pathological voice detection (e.g., Parkinson), 
prosodic features are also considerably beneficial in the final 
diagnosis accuracy [28]. The aforementioned works have 
confirmed the importance of prosodic features and indicated 
that when the SE module is used as a front-end processor for 
speech-related applications (in addition to the pursuit of 
precise spectral mapping), preserving the correctness of the 
prosodic features should be considered. 

According to our literature survey, no prior works have 
designed an SE system that aims to simultaneously enhance 
the unified acoustic features (e.g., spectral and prosodic 
features). In [29], a multi-objective learning approach for SE 
was proposed to obtain more accurate estimations of the log-
power spectral features with the help of a secondary task, 
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Fig. 1: Overview of different learning approaches. 

 
which considered other spectral features or categorical 
information. That work could be considered as the closest to 
our current study. However, the motivations and methods are 
different. In the current work, we study three SE systems (i.e., 
fixed-concat, joint-concat, and multi-task) that generate not 
only enhanced spectral features but also more accurate 
prosodic features. To evaluate the proposed systems, in 
addition to the perceptual evaluation of speech quality 
(PESQ) and short-time objective intelligibility (STOI), which 
are two standardized evaluation metrics for SE performance, 
we also measure the correctness of the intensity and f0 
contours in terms of the Spearman correlation coefficient. Our 
experimental results confirm that all three SE methods 
improve the intensity and f0 extraction accuracy without 
sacrificing the PESQ and STOI scores compared with the 
baseline SE system. We note that in contrast to the works that 
extracted the prosodic features from noisy speech signals [30, 
31], the main objective of the unified feature SE methods is to 
generate speech waveforms with enhanced spectral and 
prosodic properties. We believe that the enhanced speech 
waveforms can provide higher speech intelligibility to 
individuals with normal or impaired hearing [32], especially 
for tonal languages. 

The remainder of this paper is organized as follows. 
Section II introduces the database used in this study. Section 
III presents the research methodology. Section IV details the 
experimental results and analysis. Section V concludes the 
paper with discussions and future work. 

II. DATABASE AND FEATURES 

A. Database 

The speech corpus used in this study consisted of 2,560 
Mandarin utterances recorded by eight native speakers (four 

males and four females). The script for recording was based 
on the Taiwan Mandarin hearing in a noise test (TMHINT) 
[33]. A total of 320 unique sentences were provided in which 
each sentence contained 10 Chinese characters. Each speaker 
recorded all 320 sentences. The length of each utterance was 
approximately from 3 to 4 seconds. All utterances were 
recorded in a quiet environment at a 16-kHz sampling rate. 

To prepare the training set, we selected the first 200 
utterances of six speakers (three males and three females) as 
the clean training data. Then, we randomly sampled 100 
utterances from the 200 utterances by each speaker and 
artificially mixed the sampled utterances with 40 noise types 
from [34] at a signal-to-noise ratio (SNR) that ranged from 
−10 to 20 dB. This process resulted in 100 * 6 * 40 noisy 
training utterances with their corresponding clean references. 

In the testing set, all conditions were different from the 
training set, including different scripts, speakers, and noise 
types. We selected the last 120 utterances of the remaining 
two speakers (one male and one female) and mixed the 
selected utterances with two stationary (i.e., engine and car 
idle) and two nonstationary (i.e., street and babble) noises at 
five SNR levels (i.e., −10, −5, 0, 5, and 10 dB). These noise 
types were not presented in the training set. Overall, the 
testing set consisted of 120 * 2 * 4 * 5 noisy utterances. 

B. Feature Extraction 

The starting and ending silent portions of each clean utterance 
(and the corresponding noisy ones) were discarded using a 
pitch-based VAD. For the spectral feature extraction (FE), we 
conducted a short-time Fourier transform (STFT) of 512 
sample points (i.e., 32-ms frame size) for every 256 sample 
points (i.e., 16-ms frame shift), which resulted in a sequence 
of frame-based spectral features of 257 dimensions for each 
utterance. The prosodic features, including the intensity (dB) 
and f0 (Hz), were extracted using the Praat toolbox [35] using  
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TABLE II 
PROSODIC FEATURE ENHANCEMENT RESULTS OF THE BASELINE AND MULTI-TASK SE APPROACHES UNDER DIFFERENT 
GENDER, NOISE TYPE, AND SNR CONDITIONS (ALL P-VALUES ARE LOCATED BETWEEN 0.01 AND 0.05) 

 Intensity f0 
 Gender Noise type SNR Gender Noise type SNR 

Approach Female Male NonStat. Stat. Low High Female Male NonStat. Stat. Low High 
Noisy 0.765 0.783 0.757 0.791 0.525 0.941 0.335 0.411 0.371 0.376 0.109 0.534 

BaselineSE 0.805 0.867 0.815 0.857 0.722 0.912 0.633 0.511 0.556 0.588 0.417 0.675 
Multi-task 0.817 0.874 0.824 0.866 0.738 0.917 0.675 0.518 0.584 0.609 0.457 0.690 

 
TABLE I 

TESTING RESULTS OF DIFFERENT SE APPROACHES (ALL P-
VALUES ARE LOCATED BETWEEN 0.01 AND 0.05) 

 SE Intensity f0 
Approach PESQ STOI ρ ρ 

Noisy 1.532 0.692 0.774 0.374 
BaselineSE 1.978 0.737 0.836 0.572 
Fixed-concat 1.966 0.730 0.833 0.586 
Joint-concat 1.953 0.733 0.841 0.591 
Multi-task 1.976 0.739 0.845 0.597 
 
the same frame rate and frame size as the spectral feature. 
Note that because we first adopted VAD and then used a 
smooth f0 contour in our work, the f0 contour was continuous 
(e.g., Fig. 2(d)). Some research works apply such continuous 
f0 processing, such as in multimodal emotion recognition [36]. 
As a result, after FE, each frame was represented as a 259-
dimensional vector (257 spectral (denoted as spec hereafter) 
and 2 prosodic (denoted as praat hereafter because they were 
extracted using Praat) dimensions). 

III. METHODOLOGY 

Because our goal was to compare the different learning 
approaches for a unified feature enhancement, we fixed the 
base NN architecture used in all methods. The base NN model 
was composed of two fully connected bidirectional LSTM 
(BLSTM) layers (i.e., the number of nodes was the same as 
the dimension of the input features), followed by two dense 
layers (the first with 300 nodes and the second with the same 
number of nodes as the target feature dimensions), using the 
Leaky ReLU activation function. All models were trained 
using the RMSprop optimizer to minimize the custom loss 
between the output and target features, which is defined as 

 
Loss = a * MSE(spec) + b * MAE(praat) 

 
where a and b are weighting parameters, spec and praat 
represent the spectral and prosodic features, respectively, and 
MSE and MAE denote the mean square and mean absolute 
errors, respectively. These structures and parameters are 
empirically determined. 

A. Learning Approaches 

In this work, we compared three unified SE methods with the 
normal SE method. The overview of these methods is shown 
in Fig. 1. We describe the details in this section. 

1) Baseline SE: This is a normal SE model trained to 
output the enhanced spec' feature from the input noisy 

spec feature. Because it does not use the praat feature 
information, the loss function is equivalent to that in 
Equation (1) with [a, b] set to [1, 0]. 

2) Fixed-concat: Fig. 1(b) shows that this method directly 
concatenates a pre-trained FE model after the SE 
model to feed back the losses of the predicted intensity 
and f0 contours to train the SE model. The pre-trained 
FE model is fixed during the SE model training. In this 
work, we trained the FE model using all 1,200 clean 
speech utterances from the training set. The loss in the 
FE model training was the MSE of the predicted 
prosodic features based on the input clean spec feature 
with respect to the corresponding clean praat targets 
extracted by the Praat toolbox from the clean 
waveform. We could consider the FE model as an 
alternative Praat toolbox that operated on the spectral 
feature rather than the raw waveform. Therefore, it 
could be concatenated after the SE model to generate 
the praat feature loss information to train the SE model. 
To achieve this goal, the performance of the FE model 
must be sufficiently high. The evaluation of the FE 
model is discussed in Section IV-A. 

3) Joint-concat: Figs. 1(b) and 1(c) show that the only 
difference between the joint-concat and fixed-concat 
methods is that the SE and FE models are jointly 
trained in joint-concat, whereas the pre-trained FE 
model is fixed during the SE model training in fixed-
concat. Hence, we can expect that the FE model will 
better fit with the SE model in joint-concat. The FE 
model in the joint-concat system can be regarded as a 
prosodic feature extractor that is trained to generate 
prosodic features from the enhanced spectral features. 

4) Multi-task: One common learning approach to utilize 
diverse information is the multi-task learning. The 
architecture of the multi-task system in this study is 
shown in Fig. 1(d). The main concept is to build a 
common feature representation (a shared layer) for the 
SE and FE tasks. Thus, effective regularization is 
induced, and more accurate outputs are generated for 
both tasks. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Settings 

We report the results of the testing set mentioned in Section 
II-A. As presented earlier, all the SE systems used the same 
NN model structure (i.e., 2-BLSTM and 2-Dense). Therefore, 
we could fairly compare their SE performance. We use the 

(1) 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1181



 
Fig. 2: Example of different enhanced features using the baseline and multi-task SE approaches, including the spectrogram, waveform, and 
intensity and f0 contours extracted by the Praat toolbox from the enhanced speech. The results of the clean speech are also listed for comparison. 
 
inverse STFT to convert the enhanced spectral output of each 
SE model into waveform and evaluate the SE performance in 
terms of PESQ [37] and STOI [38]. To evaluate the output 
intensity and f0 features, we compared the feature contours 
extracted by Praat from the enhanced waveform and the 
corresponding reference clean waveform in terms of the 
Spearman correlation coefficient (ρ). The weighting 
parameters [a, b] in Equation (1) were set to [10, 0.1] in all 
methods (i.e., fixed-concat, joint-concat, and multi-task). By 
testing the 240 clean utterances from our testing set, the pre-
trained FE model used in fixed-concat achieved ρ = 0.935 and 
ρ = 0.820 for the intensity and f0 contour extractions, 
respectively, compared with the contours extracted by Praat. 
The performance was considered sufficient for use in the 
fixed-concat SE system. 

B. Results and Analysis 

All p-values (two-sided for a hypothesis test whose null 
hypothesis expresses that the two sets of data are 
uncorrelated) of the Spearman correlation coefficient (ρ) in 
Tables I and II were located between 0.01 and 0.05, which 
were considered as statistically significant. Table I lists the 
summary of the test results of the different SE approaches. 
From Table I, we first note that all the evaluation metrics 
(PESQ, STOI, and Spearman correlation coefficient ρ for 
intensity and f0) were rather poor under a noisy condition. In 
particular, the accuracy of prosodic FE was seriously 
deteriorated by the noise. Next, we note that the baseline SE 
system could already improve the PESQ and STOI scores 

with notable margins. Meanwhile, the prosodic features 
extracted from the enhanced waveform by the baseline SE 
system also yielded higher Spearman correlation coefficients 
than those extracted from the noisy waveform. 

When investigating the three unified feature enhancement 
systems, we first note that all systems could notably enhance 
the accuracy of the f0 estimation (joint-concat and multi-task 
could also produce enhanced intensity estimation) while 
maintaining the PESQ and STOI scores compared with the 
baseline SE system. Among the three systems, the multi-task 
system achieved the best performance in all the evaluation 
metrics. In the next process, we used the multi-task system as 
a representative to illustrate the advantage of considering the 
unified features in the SE task. 

We further compared the enhanced prosodic FE results of 
the multi-task and baseline SE approaches with respect to 
three factors: gender, noise type, and SNR. The comparison 
results are listed in Table II. From the table, we first note that 
the intensity and f0 features exhibited very similar trends. 
When the gender factor was considered, the improvement in 
the multi-task SE system over the baseline SE system was 
clearer for female speakers. Next, when the noise types and 
SNR levels were considered, the multi-task SE system 
provided more improvements under challenging conditions, 
namely, low SNR and nonstationary noise types. 

C. Qualitative Analysis of the Enhanced Features 

In addition to the quantitative comparison of the multi-task 
and baseline SE systems, we also conducted a qualitative 
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study of the benefits of the unified feature enhancement 
approach. We selected one utterance from the test data and 
plotted the spectrogram, waveform, intensity, and f0 contours 
under three conditions: clean, enhanced by the baseline SE 
system, and enhanced by the multi-task SE system. The plots 
are shown in Figs. 2(a)–2(d), respectively. 

From the spectrogram, waveform, and intensity plots 
shown in Fig. 2, identifying the differences between the multi-
task and baseline SE systems is not easy. Because the 
intensity contour had a relatively high correlation with the 
waveform and spectrogram, the intensity constraint might 
have contained partial overlapping information with the 
spectral feature, which could explain why the improvement in 
the intensity estimation by the multi-task system presented in 
Section IV-B was not significant. 

On the other hand, we can obviously see the distinction in 
the f0 contour extraction. The baseline SE system lost most f0 
information and even failed to retain the ending portion of the 
utterance (see the green line in the f0 plot in Fig. 2(d)), 
thereby resulting in bad performance. This phenomenon 
indicated that using the spectral-based feature only could not 
effectively capture the f0 information. Introducing an 
additional f0 constraint during the training could resolve this 
problem, as shown by the red line in Fig. 2(d). These 
advantages and insights are obtained by evaluating different 
types of features, which cannot be obtained from the PESQ 
and STOI scores. 

V. CONCLUSIONS AND FUTURE WORK 

In this study, we have investigated three learning approaches 
for a unified acoustic feature enhancement and found that the 
multi-task method achieves the best result. By imposing 
additional praat feature constraints, we are able to obtain 
improved intensity and f0 estimation from the enhanced 
speech without losing the STOI and PESQ scores. Speech-
related application systems that rely on spectral and prosodic 
features, such as speech emotion recognition and gender 
recognition, may benefit from the unified feature 
enhancement framework. 

Our immediate future work is to concatenate the back-end 
speech-processing techniques (e.g., emotion recognition, 
VAD, and VC) with the front-end unified feature 
enhancement framework to build end-to-end noise-robust 
speech application systems, and determine whether the 
unified feature enhancement can indeed improve the system 
performance under noisy environments. Moreover, we will 
keep on experimenting different acoustic features such as 
formant and MFCC to increase the generality of the unified 
feature enhancement. 
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