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Abstract—A major concern in the speech production research
is how speakers make a plan for speech articulation, in which
the latent time is an important index for evaluating the planning
process. Previous researches on this topic using either isolated
words or phrases found that the word length and familiarity
could affect the latent time of speech planning. However, in
continuous sentence processing, semantic prediction was found
to be more influential from our previous eye movement investi-
gation. To probe further into the underlying neural causes, this
study combined eye movement and EEG techniques to analyze
the behavior-locked brain activities during the speech planning
process in a sentence reading task. The results showed that the
latent time decreases gradually with ongoing reading process as
the context information got richer. And the subjects tend to look
ahead prior to the articulation of the current word. Functional
network analyses for the visual and semantic processing were
consistent with the behavior results and suggested that the look-
ahead phenomenon is a companying effect of speech coarticula-
tion, and as speech prediction becomes easier, the latent time for
speech planning tend to be shortened.

Index Terms—Speech planning, Latent time, Eye movement,
EEG, Functional network analyses, look-ahead phenomenon.

I. INTRODUCTION

Major concerns in speech production research include how
speakers perform speech-planning, and what are the major fac-
tors that affect the planning process. In the case of oral reading,
speakers first obtain text information via visual perception, and
transform the visual information into lexical information. Dur-
ing this process, semantic and phonological processes might
be also involved. Then, motor commands were executed for
articulation, and thus speech sounds are finally generated [1].
From the physical and physiological aspects, we should con-
sider at least three factors in abovementioned speech planning
stages, namely the latent time, anticipation effect and carryover
effect. The latent time is the period of speech planning process,
which is defined as the time from the gaze onset of the reading
text to the onset of the speech output in oral reading. The
anticipation effect describes the phenomenon that speakers
look ahead a number of words for the integrated processing
of the current words when the coarticulatory effect was taken
into account. The carryover effect is another expression of
the coarticulatory effects, which reflects the movement and

deformation of the speech organs in preceding words. The
anticipatory coarticulation reflects high-level phonological-
phonetic processing, which occurs only if the speaker can
look ahead in context and anticipate oncoming sounds [2].
The benefits of planning ahead include avoiding mistakes and
avoid becoming tongue-tied. To describe this process, Henke
proposed a phonemic-segment model, called the look-ahead
model [3]. It hypothesized that for the production system to
perform fluently, the speakers need to scan ahead to find out
which sounds are to be produced next. If the specification of a
sound permits (i.e. if with semantic coherence), the articulators
are brought into the position necessary for the particular sound
that is yet to come. That is, speech planning does not proceed
in a word-by-word fashion.

Previous studies on speech planning were mostly conducted
on isolated words by eye movement and speech information, in
which the planning period was measured from the onset of the
word presentation to the onset of the uttering [4]–[7]. Studies
using this methodology have shown a tight link between the
onset of participants fixation of a word and the onset of
uttering the fixated word. It is found that the length [8]–
[10] and the familiarity [11]–[13] of words would significantly
affect the mean latent time for speech planning. However, with
only isolated words investigated, this approach is not able to
reflect some intrinsic factors such as the anticipation effects
in continuous speech processing. In recent years, researchers
started to adopt phrase and sentence reading tasks to explore
such effects. In the case of producing a noun phrase, Smith
and Wheeldon [14] found significantly longer onset latencies
when producing a complex noun phrase than a simple noun
phrase. Damian and Dumay [15] showed that (in English) the
onset latencies for phrases consisting of an adjective and noun
beginning with the same phoneme (e.g., blue bell) were faster
than for those began with different phonemes (e.g., white bell).
These results implied that the speakers access the latter lexical
representations and phonological information prior to the
speech onset of the phrase. In that case by delaying production
of the first word in the utterance until they had some sense
of the availability of the phonological form of the upcoming
word [9]. These results implies that the latent time of speech

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

945978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



planning is affected by the anticipation and carryover effects.
In our previous study, we used eye movement to measure the
latent time in oral reading of continuous sentences, and found
that latent time is heavily dependent on the word location in
the sentences, where the latent time reduced along with the
sentence monotonically [16]. The location effect in continuous
speech is more significant than the word length, which is
inconsistent from previous studies.

So far, the above-mentioned studies mainly adopted behav-
ioral analysis to explore the latent time of speech planning.
The limitation of this line of investigation lies in that lack
of explanation of the brain activation during the latent time
it could make. To shed light on the black box, neural in-
vestigation is necessary to combine with behavior ones to
for a comprehensive exploration. For this reason, this study
investigated the speech planning process from the human
behavioral and neurological aspects by combining electroen-
cephalography (EEG), eye-tracking and speech data during
oral reading of continuous sentences. This multimodal data
analysis method is promising to uncover the causes of the
difference between our results and previous ones and clarify
the mechanism of speech planning.

In general, the brain activation obtained during articulation
movement is easily buried in muscle activity artifacts and
disturb further analyses. Fortunately, with recent advances in
the neurophysiological techniques represented by Electroen-
cephalography (EEG), it is possible to reduce artifact inter-
ferences using blind source reconstruction methods [17]. and
investigate the brain dynamics at the millisecond level [16].
Besides, the latest advent of the Granger causal analysis [18]
and multivariate autoregressive (MVAR) modeling [19] along
with the source information toolbox (SIFT) [20] provided a
novel framework to estimate and visualize the information flow
within distributed brain networks based on time-frequency
information [18]. On the other hand, neuroimaging techniques,
such as fMRI, possess high spatial resolution in characterizing
regional dynamics. In this study, we use fMRI-based brain
network from previous studies as constraint on EEG signal
processing to examine the spatial network dynamics of our
EEG-constructed network sequences.

II. METHOD

A. Experimental design

In this experiment, 180 sentences with unified structures
(US) were used as the oral reading text, where the experiment
is separated as three blocks with 60 sentences, each trial has
one sentence. Each of the sentences is composed of 8 two-
character Chinese words (16 characters/syllables per sentence).
For each trial, once the sentence was presented on the screen
along a horizontal line, the subject was asked to utter the
sentence at a natural speech rate, as soon as possible. When
the subjects gazing point fell in either one of the 16-character
fields, a trigger with the corresponding number would be
marked on EEG signals, where EEG, eye movement and
speech data are recorded simultaneously. The trial ends with
an ESC key press. There is a 2000-ms resting period after

the preceding trail, and then a fixation cross appears in the
center of the screen for 1000ms, followed by the presentation
of a randomly selected sentence. The whole experiments lasted
around 52 to 88 minutes.

Totally, 16 Mandarin speakers from Tianjin University (8
male and 8 female, 20-26 years, mean age 22.8 years, Std=1.6)
participated in this study. All the subjects reported normal or
corrected-to-normal vision, right-handed [21], and with normal
hearing and speaking abilities. The ethical approval for this
experiment was obtained from the Tianjin University Research
Ethics Committee and JAIST Research Ethics Committee.

B. Equipment and data acquisition

During the experiment, participants were seating in a
comfortable armchair in an acoustically shielded room and
facing a computer screen that was 1 m away. In order to
minimize the possibility of EEG artifacts associated with large
movement, their foreheads were asked to place against a
rest. The experiment started with a practice session with a
number of sample trials for familiarization. EEG data were
acquired with a SynAmps RT amplifier (Neuroscan, USA)
with 128 electrodes mounted on the scalp by the standard
of the105 system [22]. Six EOG electrodes were affixed to
the left and right outer eye canthi and above and below
both eyes. EEG data were referenced to the FCz electrode
during acquisition and sampled at 1000 Hz. The impedance
for each electrode was maintained below 5 k. Eye movement
was recorded at 100Hz via a monocular pupil tracking system
(Eyelink 1000, SR Research Ltd., Canada). A three-point
(horizontally distributed) calibration was adopted when the
eye-tracking failed or shifted (Gaze accuracy deviation <0.50).
Meanwhile, Speech was recorded using a microphone (SONY
ECM MS957) at 44100 Hz.

III. DATA PROCESSING AND ANALYSIS

A. Behaviors data analysis

The locations and durations of eye movement were analyzed
in MATLAB (MathWorks) for detecting the onset and offset
of eye gazing of each word in the sentence. The speech
was segmented and aligned using SPPAS software [23] for
detecting the onset and offset of the pronunciation of each
word. The time from each eye onset to eye offset is defined
as the visual processing period, and the time from eye onset
to speech onset of a word is regarded as speech planning of
the word. Semantic processing may happen somewhere within
the whole process. Fig.2(a) listed the averaged latent time of
speech planning for each of the eight words over ten subjects.

B. Preprocessing and analysis of EEG

Pre-processing was performed by using the EEGLAB tool-
box [24]. Firstly, the EEG signals passed through a high-pass
filter with cutoff frequency of 1Hz after down-sampled to
250Hz. In order to preserve the active component of speech
perception (a part of gamma band: 30Hz - 60Hz), we applied
a 60Hz low-pass filter on the data, where the line noise was
filtered out by a band stop filter from 49.5Hz to 50.5Hz [25].
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Bad channels with over 10 of abnormal fluctuations were
removed before re-referencing the data to average. Then the
continuously recorded data were segmented into 180 epochs
ranging from -1000 ms to the end of each trial, where the
presentation timing of each sentence is defined as 0 ms,
and the segment from -1000 ms to 0 ms was used as the
baseline. Following the preprocessing, we applied the adaptive
mixture independent component analysis algorithm (AMICA)
to transform the scalp-EEG data from a channel basis to
a component basis [17], and separated out those maximally
independent cortical sources from biological artifacts (such as
the eyes, muscles, and heart) and noise components [25]. After
the reject noise AIMCA components, an equivalent current
dipole (ECD) model of each brain component was computed
using the standard boundary element method (BEM) head
model included in the EEGLAB DIPFIT plug-in to localize
dipoles on the cortex http://sccn.ucsd.edu/wiki/A08: DIPFIT.
Based on the dipole features, those physiologically plausible
dipoles were selected and clustered across subjects to define
the regions of interest (ROIs). In the EEGLAB, the ROIs is
defined as 76 cerebral cortical areas.

C. Constructing Time-Frequency Brain Networks

Once activity in specific brain areas have been identified
using source separation with AMICA and localized using
DIPFIT, it is possible to look for transient changes in the
independence of these different brain source processes. In
this paper, we applied routines from a source information
flow toolbox (SIFT) for modeling ongoing or event-related
effective connectivity between these ROI time-series [20].
In the processing, a linear vector adaptive multivariate auto-
regressive (AMVAR) model [28] of order 10 was then fitted
to the multi-trial ensemble with 500 ms sliding window and
a step size of 25 ms, using the Vieira-Morf lattice algorithm.
Following the model fitting and tests of stability and residual
white-ness, the Direct Directed Transfer Function (dDTF) was
estimated from the AMVAR coefficients to quantify time-
varying connectivity [26]. In paper, 13 subjects out of 16
participants were used for the statistical analysis by means
of the group level SIFT to analysis the spatiotemporal brain
dynamics.

D. Spatial Correlation Analysis of brain functions

In order to assess the change in brain activity related to
the reading sentence, we focus on five brain functions in
speech planning. To take the high spatial resolution of the
fMRI into our EEG analysis, we employed the existing fMRI
achievement of the brain networks as an initial value and
constraint in our EEG analysis. In this study, we used the
fMRI database of Morphological and Connectomic Atlas of
Human Brain Functions (Connectopedia Knowledge Database,
a freely available database at http://www.fmritools.com/kdb/
morphological-and-connectom/index.html) to construct func-
tional adjacency matrices from the brain functions of the
visual, phonological, semantic, speech motor programming
and speech perception. We calculated the similarities for each

Fig. 1. Brain stages of Spatial Correlation Analysis (SCA). (a) the EEG
data Pre-processing from EEGLAB. (b) The functional networks matrix from
Connectopedia Knowledge Database and effective connection matrix from
Group-SIFT toolbox. (c) Correlation coefficients for functional networks.

function using the fMRI-based functional adjacency matrices
(FAM) and the EEG-based FAM along with time by means
of Pearson correlation coefficient. Using the approach shown
in Fig.1, we calculated the correlation between the fMRI-
based FAM and the time-varying FAM obtained from our
EEG experiment. Thus, a time-varying correlation coefficient
is obtained for each brain network. The higher the coefficient
in a certain period, the higher activation the brain network in
that time. In Fig.1(c), the red color shows the high correlation
coefficient, and indicates that the brain network is activated
highly.

IV. RESULTS

A. Behaviors results

Fig.2(a) shows the averaged latent time distribution for the
sentence with 8 disyllable words over all of the 180 sentences
from 13 subjects. The horizontal axis indicates the word order
of the sentence, and the vertical axes show the latent time (LT)
of words. In this figure, the thick blue line is the averaged LT
of each word. The light dark region and pale region surround
the middle line represents the LT distribution with a 25%-
75% and 9%-91% difference area, respectively. Finally, the
maximum and minimum LT was showing as the most outside
light blue line. In addition, the exact LT of each word was
shown in a table besides the plot. Fig.2(b) shows the averaged
gaze onset (GO) (red dotted line) and speech onset (SO) (blue
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TABLE I
AVERAGED OVERLAP (MS) OF THE GAZING/SPEECH ONSET /OFFSET FOR 8

WORDS.

Word number GO GF SO SF Overlap

Initial 347
(77)

939
(232)

1041
(192)

1569
(234)

2 939
(232)

1540
(284)

1569
(234)

1996
(265) 101

3 1540
(284)

2014
(309)

1996
(265)

2473
(306) 29

4 2014
(309)

2459
(373)

2473
(306)

2959
(365) -18

5 2459
(373)

2963
(423)

2959
(365)

3472
(402) 13

6 2963
(423)

3505
(443)

3472
(402)

3995
(402) -4

7 3505
(443)

4058
(482)

3995
(461)

4497
(526) -33

Last 4058
(482)

4588
(507)

4497
(526)

4988
(565) -63

dotted line) as reading the sentence. The latency of each word
is indicated by a solid gray line, and the overlap between the
words before and after is marked with a solid green line. The
detailed values and standard deviation are shown in Table 1.

As shown in Fig.2(a), the latent time of the initial word
is 694 ms (Std=210) and decreases gradually to 438 ms
(Std=133) for the last word. As one can see, these is a
significant difference (F(1,25)=12.6, p=0.0016) in the latent
time between the initial word and the last word have although
they are equal in lengths. On average, the latent time of the
last word is 37% shorter (256 ms) than that of the initial one.
It indicates that the latent time of speech planning changes
with the location of the words in continuous speech.

Comparing the gaze onset (GO) and speech onset (SO)
in Fig.2(b), speaker starts to utter the first word after they
looked at the second word. That is, looks ahead one more
word. In the middle portion of the sentence, the SO starts
almost at the same time as GO moves on the following word.
In this case, the split light of the speakers eyes possibly get
some information of the following word. In the posterior part,
especially for the last two words, speaker utters the word
without look ahead. When randomizing the words for the same
sentence, the latent time of a word does not change with its
location [30]. This indicates that the context in the posterior
part of the sentence can provide sufficient information for
making the speech planning, so that it does not require the
look ahead action for the anticipation. To clarify the relation
of the look ahead action and comprehension in the brain, we
conduct the following EEG analysis.

B. EEG results

Fig.3 illustrates the brain connectivity structure of the two
selected fMRI functional networks (the visual processing and
semantic processing) and their representational similarity with
our EEG dynamic network series, shown as the color bar
where warm color indicates high similarity (strong functional
activity) and cold color indicates little similarity (no significant

functional activity). In addition, the brain dynamics corre-
sponding to the high-similarity moments are given below,
with the nodes of the regions of interest (ROIs) and their
interconnections during the whole range and across all the
subjects. The size of the node indicates the activeness of the
corresponding region and the link is the connectivity with other
nodes. The active areas are listed in the bottom of the figure.
The ROIs are consistent with those of previous research.

From the results of the first word, visual processing network
initiated from the start (0 ms) and lasted until 144 ms. The
gaze point has moved to the second word at 592 ms before
starting utterance of the first word at 694 ms. Visual processing
network is also activated again at 552 ms when looking at the
the second word and continues until the end of 600 ms. This
is basically consistent with above behavior results. Note that
the semantic processing network is working when the gaze
point moving to the second word. This indicates that for the
first few words the semantic processing needs more contextual
information via the lookahead actions.

For the results of the last word, visual processing network
were significantly activated at the onset of the gaze and lasted
until 72 ms, which is about the half of the time used in the first
word. It can be observed that the activation pattern of the brain
network becomes complicated (network has more activation
area) due to the superposition of the effect of previous words.
The semantic processing network is activated at the near the
ending of the latent period (360 ms - 438 ms). The interval
between the peaks of visual processing and sematic processing
is 520 ms for the first word and 350 ms, the difference is
170 cm. Both the time of visual processing and semantic
processing of the final word were about the half of that for
the first word. The reduction of the intervals and processing
times is plausibly caused by the factor that the final word has
richer contextual information than the first word.

V. DISCUSSION

In this study, we measured the behavioral (eye movement
and speech) and neurophysiological data (EEG) during oral
reading of continuous sentences to clarify the mechanism of
speech planning. To remedy the spatial limitation of EEG,
we introduced fMRI-based functional network database as
a constraint to examine the functional significance of the
brain networks over time. From our behavioral results, the
lookahead action was clearly observed in the anterior part
of the sentence, but was not obvious in the posterior part.
The neurological results showed that the semantic processing
is synchronized with the lookahead actions. In other words,
looking ahead is required for anticipation of the following
words during the semantic processing. It was also found
that the interval between the peaks of visual processing and
semantic processing was reduced approaching to the final
word, and the duration of visual processing and semantic
processing of the final word decreases by half compared to
the first word. The reduction of the intervals and processing
times is plausibly caused by the factor that the final word has
richer contextual information than the first word.
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Fig. 2. (a) The averaged latent time distribution for each of the 8 disyllable words. (b) The latent time and the overlap.

Fig. 3. Correlation coefficients for functional networks. The correlation coefficients is represented by a color scale, with more red colors indicating the higher
matching degree of EEG reconstructed spatiotemporal dynamic network and fMRI network template.

In addition, the decreasing trend of the latent time along
with the order of words was also reflected in this study based
on the eye movement and speech onset boundaries of each
word. Specifically, the latent time of the last word was nearly
40% shorter than the initial word. In the later stage of reading,
the speech onset got close to or even ahead of the gaze offset.
This can be well explained by the semantic association and
prediction in coherent sentences. As the word goes on and
more content is available, semantic prediction for the following
word becomes easier, so that the time spent on the planning
of the word get shortened. By analyzing the brain activity of
the initial words and the last words, it was found that the
initial words cost more time for semantic processing. For the
last word, the duration of semantic processing was decreased,
while the onset was advanced. All these results indicated
that the semantic prediction plays a major role in continuous
speech planning.

In fMRI-constraint network analysis, two functional net-
works pertaining to the experimental task have been carefully
examined. The results showed that the activation of the visual
processing network is highly consistent with the onset of
eye movements. And in the initial words, the SCA result
of the semantic processing network indicates that semantic
processing occurs during the gaze onset of the second word.
This is a good explanation of the anticipatory coarticulation
of the look-ahead model from a neuroscience perspective. The
Look-ahead model suggested that people will anticipatorily
fixate and predict the upcoming word for proceeding with the
current word [2], [3]. In our results, the speaker often looks at
a word backward before the speech onset of the current word.
This can be reflected in the overlaps of the latent time of the
first three words.
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VI. CONCLUSION

This study examined the latent time of speech planning with
behavioral and neurological techniques, and investigated the
functional networks including visual processing and semantic
processing involved in speech production during oral reading.
The results echo with the look-ahead model and showed a
carryover effect where the speaker often looks forward prior to
the speech onset of the current word. Our results also showed
a gradually decreasing trend of the latent time along with the
order of words, which suggested the semantic prediction is
a critical influencer to the decrease of latent time in speech
planning for continuous speech.
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