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Abstract—In this paper, we present a new algorithm for
automatic music completion. We have proposed automatic music
completion as the class of music composition assistance problems
of generating a complete piece of music given fragments of
musical ideas input by a user. These fragments include partial
melodies in multiple voices or parts of the underlying harmony
progression. Therefore, it is a generalization of common problems
such as melody harmonization or harmony constrained melody
generation, but also includes problems with constraints in multi-
ple domains, i.e. multiple voices and harmony. We present a new
polyphonic voicing model for automatically completing four-part
chorales. It is based on a hidden Markov model and what we call
correction factors. These factors are trainable functions that effi-
ciently capture the context of a voicing in order to account for a
multitude of music theoretical rules without having to resort to a
rule-based system. We observed improvement over our old model
with regards to metrics that are derived from music theory for
polyphonic voicing, and also invite the reader to try our algorithm
themselves at http://160.16.202.131/music_completion_apsipa.

I. INTRODUCTION

Algorithmic music composition is a research topic of in-
creasing popularity. However, many approaches belong to the
category of autonomous composition, which means that a
human is replaced by a computer, which generates music on
its own. On the other hand, our aim is to support human
creativity by providing tools for users to more easily realize
their own musical ideas. For many of the published automatic
music generation systems that do process some sort of input,
the type of information that can be input is quite limited.
For example, algorithms solving the conventional problem
of melody harmonization [1][2] require a single, complete
melody as input. However, we want our system to be able to
also handle incomplete melodies, in case the user only comes
up with a melodic fragment, or to handle notes in multiple
voices as well as constraints to the harmony progression, and
possibly further modes of input.

We call this problem of processing a variety of user
inputs and turning these fragments into a complete music
piece “automatic music completion”. As a generalization of
several conventional music information tasks such as melody
generation, melody harmonization, an ideal solution to this
problem is a system that outputs music pieces that reflect
the initial ideas of the user, may they be interesting melodic
motifs, thythmic patterns, countermelodies, harmonies, or any
combination thereof. In this paper, we apply the principle
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of automatic music completion to the composition of four-
part chorales. This is a popular discipline of classical music
and a complex task due to the multitude of music theoret-
ical rules that exists for polyphonic music. We present a
new model for polyphonic voicing in combination with an
optimization algorithm that overcomes several weaknesses of
our previous model [3][4]. In particular, the smoothness of
generated melodies was improved and the computation speed
considerably increased.

II. RELATED RESEARCH

The first publication on automatic music composition dates
back to the 1950s [5]. For an overview over this field of
research, we refer to a survey on the topic by Ferndndez
and Vico [6]. Many of the popular approaches to algorithmic
composition are of autonomous nature, such as David Cope’s
Experiments in Music Intelligence [7], the Melomics music
database [8], which was generated using a genetic algorithm,
Kulitta [9], a composition framework based on a formal
grammar, and Google Magenta’s recurrent neural network
which generates human-like piano performances [10]. Despite
their popularity, they aim at replacing human composers which
does not coincide with our goal.

Music composition systems that support human creativity
generally process some sort of user input, which is, however,
often quite limited. The composition system Orpheus [11]
processes lyrics or an input melody in combination with
abstract parameters to generate songs, other support user-
driven melody generation constrained by abstract parame-
ters [12], by input melodies in order to generate varia-
tions [13], to interpolate missing parts [14], or to improvise
a fitting countermelody [15]. The complementary problem of
melody harmonization generally involves a melody as user
input and generates notes of accompaniment voices [1] or
lead sheets [16][17], which are pairs of a single melody and
a harmony progressions.

However, our research goal is to not only compute har-
monies for melodies or vice versa, but to process any combina-
tion of partial harmonies, melodies and voicings. Similar to our
approach in that respect is a system called FlowComposer [18],
that assist a user in generating lead sheets. The system
allows users to constrain both melody and harmony, and
generates results using a Markov model. The two approaches
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Fig. 1. Two exemplary voicing rules. Parallel fifths and octaves, i.e., the same
motion of two voices into a perfect fifth or octave as shown red in (a) should
be avoided (as in (b)). Large distances between voices as shown red in (c)
should also be avoided (as in (d)).

closest to ours are the four-part chorale generation systems
DeepBach [19] based on neural networks, and the similar
Coconet [20] based on a convolutional neural network, which
both have the same goal, which is to imitate the composer
J. S. Bach. While not their focus, both systems can process
relatively free input for four voices. However, in contrast to
our system, they are based on random sampling, do not allow
users to constrain harmony, and are limited to Bach-like music
pieces.

III. AUTOMATIC MUSIC COMPLETION
A. Free User Input

Our motivation is to provide automatic music composition
assistance granting users a lot of freedom to input their own
musical ideas. The following two factors can increase this
freedom.

1) Allowing input of any size: No input at all, an almost
complete melody with a short section missing, or mul-
tiple melody fragments.

2) Providing multiple modes of input, e.g., single voice
melody, polyphonic voicing, harmony progression,
rhythm, or tuning parameters that allow a user to in-
tuitively influence the output.

In this paper, we present a system that provides assistance for
composing four-part chorales. Instead of imitating a specific
composer, such as J. S. Bach in related research [19][20],
our aim is a model that does not extract composer-specific
characteristics, but music theoretic principles that are valid for
a wider range of music. By extension, this principle could be
applied to different musical styles that follow Western music
theory.

B. Music Theoretical Rules and Commonness

Musicians have derived a multitude of rules for composing
polyphonic music [21], examples of which are given in Fig. 1.
However, most of these rules are not absolute, and sometimes
ignored by composers. The rules can also conflict with each
other, e.g., avoiding parallel fifths and octaves (figure 1la)
can result in large intervals between two voices (figure 1c).
The problem becomes more complicated when voicing is
constrained by user input, which might contain rule violations
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or prohibit any form of completion without ignoring one or
more rules. This is especially important for freedom of user
input, which significantly increases when allowing users to
break rules. Therefore, we hypothesize that polyphonic voicing
can be treated as the optimization problem of violating as few
and least important roles as possible. Furthermore, we want
to learn the importance of these rules from data.

This requires that patterns that are common in music data
conform to music theoretic rules and can thus be learned.
However, in this context, it is important to distinguish between
commonness and musical necessity. Not every musical pattern
that is rare violates a rule of music theory, and if a certain
pattern is very common despite its alternatives also adhering
to music theory, the probabilistic bias towards this common
pattern can actually important probabilistic tendencies to be
outweighed. An example is the unison melody interval (repe-
tition of the same note in a melody), which is very common
in the training data. In certain melodic contexts, this bias can
cause unwanted jumps in melodies, because a large number
of unison intervals in combination with one unlikely jump
can be overall still more likely than a sequence of smaller
intervals without unison intervals encouraged by music theory.
This bias towards unison intervals can be further increased by
other factors such as preferring certain distance between notes
of different voices as our previous model [3][4] did. Therefore,
during the development of the presented model, we carefully
considered, which information is irrelevant, which rules of
music theory should be handled as constraints (section IV-C),
and which should be optimized for (sections IV-D to IV-F).

IV. POLYPHONIC VOICING MODEL
A. General Approach

To account for the mutual dependence of harmony and
voicing, we jointly optimize harmony progression and four-
part voicing. To do so, we use a Hidden Markov Model
(HMM) as the basis of our model. This is a common approach
in the field [22][23] and assumes that listeners expect a certain
sequential order of harmonies, which are regarded as hidden
states of the observable notes. In our case, these notes are
those of soprano, alto, tenor and bass, which in combination
comprise a voicing v; = (ng,na,nr,np). We approach
automatic music completion as an optimization problem, and
thus formulate the following optimization objective, where
H* denotes an optimal harmony sequence H = (hq,...,hy)
and V* denotes the corresponding optimal voicing sequence
V= (v1,...,0N).

H* V* = argmaxH (P(vi, hi |vic1, hiz1, .., 01, R1))

H,\V
D
As a basis, we adopt the following HMM approximation.

P(viyhi|vic1, hioa, oo v1,ha) & P(hi | hie1) P(vi | hy)
2)
On top of this HMM basis, we implemented what we call

correction factors, which are functions that capture the melodic
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context of voicings v; based on music theoretical considera-
tions. These correction factors are trainable from data and are
described in sections IV-D to IV-F.

B. Harmony Progression

In this paper, the focus lies on the model of polyphonic
voicing and the underlying harmony progression is mod-
eled with relatively simple bigrams. The harmony bigrams
P(h;|hi—1) capture functional harmony, i.e. the symbols h;
do not represent explicit chords such as a C major triad, but
instead functional degrees in the context of a musical key.
This information is more relevant for harmony progressions
than explicit chords, for example, the first degree chord, e.g.
a C major triad in the key of C major, is commonly followed
by a fourth degree chord, e.g. a F major triad in the key of C
major. However, in the key of G major, the progression from
a C major triad to a F major triad would be very unlikely,
because F major triads do not even naturally occur in the key
of G major.

To increase the flexibility of our model, we include the
possibility of key modulation, i.e. the musical keys that the
harmonies h; and h;_; are in can be different. We can train
the key modulation probability from data given key annota-
tions and the occurrence of modulations. However, the data
available to us that contains such information is a collection of
harmony progressions of mainly orchestral pieces, which have
significantly different harmonic rhythms than the chorales we
aim to model. Therefore, we separate the training of harmonic
rhythm and harmonic transition. The harmony bigrams are
defined differently depending on whether the harmony changes
or not.

P’(hZ ‘ hi—l)

B {Psame(beat of h;) if hy = hy

(1 — Pgme(beat of h;)) P*(h;|h;—1) else

3)
where Pyne denotes the probability that a harmony will
continue at the given beat. This probability is assumed to be
the same for every harmony and learned from a chorale data
set [24]. We expect this probability to be lowest at the first
and third beat of a bar, i.e. it is more likely that the harmony
changes at the beginning or in the middle of a bar than that it
changes at a weaker beat. The harmony transition probability
P*(h; | h;—1) is learned from the orchestral data set [25] for
all hl # hifl.

C. Basic Voicing

A chord voicing is a concrete realization of a harmony
consisting of the four notes v; = (n7,n,nl, nP) of so-
prano, alto, tenor and bass. The voicing probability P(v; | h;)
represents a set of constraints rather than a probability, i.e. the
P(v; | h;) is 1 if the constraints are met and 0 if not. Since this
implies that >, P(v;|h;) # 1, it is not an actual probability
and we denote it as harmony constraint function Fg(v;, h;)
in the following.
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We do not want to normalize F'y(v;, h;) in order to obtain a
real probability, because this would introduce a bias towards
harmonies with more constraints and therefore fewer viable
voicings v;. The constraints are:

« The notes of each voice have to be within the correspond-
ing voice range. Each voice has a range of two octaves
with the highest notes being Cg for soprano, F5 for alto,
A4 for tenor and E4 for bass, which is typical for choir
voices.

o The notes of two neighboring higher voices, i.e. so-
prano/alto and alto/tenor have to be within the distance
of a tenth interval from each other. The bass is allowed
to move more freely within the distance of two octaves
from the tenor.

e Two nonharmonic tones are allowed per voicing. The
algorithm considers passing tones, neighboring tones,
escape tones and suspension notes when exploring the
search space.

e One chord note can be doubled with the exception
of seventh notes. More sophisticated constraints would
require information about chord inversion, which is not
captured by the current model.

These constraints are relatively weak, leaving a lot of room for
user input. In fact, except for the voice ranges, our system can
still handle user input that violates these constraints. The listed
rules were chosen as binary constraints, because learning them
from data often causes unwanted biases and violating them
usually does not allow to find better solutions while needlessly
increasing the search space. Whether a certain voicing is
preferred over another largely depends on how the voices move
from the previous voicings. We account for this dependency
with the correction factors discussed in the following sections,
which increase the probability if a voicing is favorable in a
certain context, and decrease the probability if not.

D. Melody Intervals

The first type of melodic context information we consider
is how each individual voice moves from one voicing to the
next. This information is important, because music theory
encourages the use of certain intervals (distance between two
notes) for melodies, especially small step movements for
smooth melodies. Denoting = € {S, A, T, B}, we define the
melody interval correction factor F; as follows.

P(n [ni_,)
P(n¥)

(3

Ff(nf’n?— ) =

(&)

If we would not normalize F; using P(n?), this would
introduce a bias towards notes in the middle of a voice range,
because very high and low notes are rarer in the data. However,
for higher flexibility with regards to user input, we do not
want higher or lower notes to be less likely, e.g. if a user
intentionally inputs a very high melody fragment, we do not
want the algorithm to forcibly move the melody back to the
middle of the voice range.
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E. Relative Motion

The second type of melodic context information is the rela-
tive motion between two voices. This information is important,
because music theory forbids the use of parallel fifths and
octaves, which describes the state of two voices that are a
perfect fifth or octave apart moving by the exact same amount,
e.g. the notes (C#, G#) moving to (D, A). Furthermore, voices
that are a seventh or ninth apart, should not move by the same
interval. For the discussion of relative motion, we introduce

the following notation for intervals [ S

y_ .z

T—Y
I =N TN

Ty
i—1—1 I

1—1—>1

1—1—1

If denoting an interval between two notes of the same voice x
or two notes at the same position ¢, the corresponding arrow
is omitted. To capture sufficient information for identifying
parallel fifths and octaves as well as consecutive sevenths and
ninths, we define the relative motion correction factor F'r as
follows.

P(I'LT 1—>z’lzy 1%1'1136_1)‘1) (7)

Pz, 17 )

i—1—4) "i—1—1

Fr(nf,nd,nf {,n! )=

Not normalizing Fr would result in a bias towards small
intervals I ;.. and I? | .., because they are very frequent
in the data. While we do want to encourage the use of such
intervals, this is already accounted for by the melodic interval

factor F7 (5), and therefore the bias would be too strong.

F. Melodic Motion

The third type of melodic context information is the overall
melodic motion of a melody. This information is important, be-
cause the consecutive use of large melody intervals, especially
in the same direction, should be avoided according to music
theory. Important in this context is the concept of steps and
skips. The former are the smaller and most common melodic
intervals (minor and major second) and the latter are all larger
intervals. Based on this, we introduce the following notation
for melodic motions M;*

—1—i
Skip Up if IP |, > 2
Step Up if0>1I" ,,>2
i 1.; = { Hold it I ,.,, =0 (8)
Step Down if —2<I¥, .. <0
Skip Down if —2>1I7, .

To capture consecutive use of intervals, we have to at least
consider two previous notes in a melody, leading to the
following definition of the melodic motion correction factor
Fyy.

FM(n nz 15T~ 2)
P(M omio1) ©)

71— 1~>z|
i—1—>i)

P(M?

The normalization removes the additional bias towards small
intervals, which is already covered by the melodic interval fac-
tor F7 (5). Since the definition of M” ;_,, entails a significant
dimensionality reduction, we can easﬂy capture larger melodic
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contexts without encountering problems with data sparsity. In
our experiments, the melodic motion correction factor F
considers up to four previous melody notes. An additional
benefit resulting from this is that consideration of a larger
melodic context reduces the probability of consecutive unisons
(ny =nj_,),1.e. a voice not moving at all. Due to the melodic
interval correction factor F7 (5), the probability of unisons
is quite high, which is good for efficient voicing, but results
in boring results with little motion. Learning larger melodic
contexts from data improves the balance between unisons and
other melody intervals.

G. Complete Optimization Objective

As described in the previous sections, our approach to
voicing optimization consists of first identifying all viable
voicings v; for a harmony h; using relatively weak con-
straints, and then weighting these weighting by considering
their melodic context. This results in the following voicing
optimization objective, which replaces P(v; | h;) in the overall
HMM optimization objective (2).

P(vnhw(m(w,hi) [ Fettnting oty

z,yEv | >y
1/w
xr xr T
H Fr(ni,ni_y) Fa(n; ani—lani—Z))
TEV

(10)

where x,y € v | > y denotes all unique pairs of two voices
in a voicing v;. The weight w serves the purpose of balancing
P(h;|hi—1) and P(v; | h;) in the HMM (2). Since each of the
14 correction terms is derived from a probability, we chose
w = 14 to balance their influence with the single harmonic
probability function. The above voicing optimization objective,
although derived from probabilities, is obviously no longer a
probability itself, because all correction factors can be larger
than 1. However, since it is not possible for loops to exists
in the search space (melodies can only move forward), search
algorithms are still guaranteed to terminate.

V. OPTIMIZATION ALGORITHM
A. Nested Beam Search

The number of possible harmony and note combinations
is very large. We denote the range of a voice (number of
notes a particular voice can sing) as r and the number of
harmony candidates as ¢ and the number of time steps as n.
In our model, » = 25 due to voice ranges of two octaves and
c =~ 1000, given the available harmony corpus and considering
all possible modulations. In many of our experiments we in-
terpolated pieces of four bars length in eighth tone resolution,
resulting in n = 32.

We have previously used Dijkstra’s algorithm to explore the
search space [3], which can have a computational cost of up
to O((cr*)™). We have improved the computation speed by
implementing a beam search algorithm [4], which reduces the
complexity to O(cr*nw) for beam width w. However, this
approach has the drawback that sometimes certain harmonies
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Fig. 2. Four examples of interpolation solutions to constraints (shown in black) that were generated randomly as described in section VI-A. The interpolated
harmony progression as well as the generated notes are shown in blue. Since there are no harmonic constraints, the algorithm does not guarantee a harmonic
resolution at the end of the interpolated section (as in the third and fourth example).
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Fig. 3. Ratio of similar (same direction) and contrary motion between voices
in Bach’s chorales and experimental results. Music theory encourages the use
of contrary motion.

become too dominant. For example, in a section without many
constraints almost all voicings remaining in the beam can
belong to a single harmony. And since the probability for the
same harmony to continue is relatively high this dominance
becomes increasingly stronger with fewer constraints. If, in
this situation, the algorithm encounters a time step with strict
user constraints that do not fit well with the dominant harmony,
often no smooth harmony transition or voice leading can be
found. Therefore, we have implemented a nested beam search
algorithm, with a beam width for harmony wy, and for voicing
w,. This algorithm will explore up to w; harmonies at each
time step and up to w, voicing possibilities for each harmony.
In our experiments, we used w;, = 25 and w, = 40.

B. Candidate Filtering

For beam search to be effective, the number of dead ends,
i.e. harmonies or voicings that have no possible continuation
given the constraints of the next time step, should be mini-
mized. Therefore, we apply a filtering algorithm that searches
for dead ends and removes them from the search space before
starting the beam search. It does this by starting at the last time
step IV of the piece and removing all harmony candidates that
conflict with the input notes at this position. It then continues
to the previous time step N — 1 and removes all harmonies
that cannot lead to any harmony remaining for time step N.
From the remaining harmonies it again removes all those that
conflict with input notes at the corresponding position, and
then iteratively continues this procedure until the beginning
of the piece is reached.

VI. EVALUATION
A. Music Theoretical Metrics

Our goal was to train a model that could generate four-
part chorales which adhere to music theory for polyphonic
voicing. To evaluate its performance objectively, we then our
data set of 271 Bach chorales obtained from the Classical
Archives [24] into 90% training data and 10% test data. From
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the test data we randomly extracted 100 sections of 4 bars
length and the randomly removed 50% of the notes in these
sections. The remaining notes were used as input constraints
for the automatic music completion algorithm. The voicing
resolution of both input and output was eighth note resolution
and harmonies were interpolated in quarter note resolution.

1) Comparison with Coconet: At the time of writing, the
authors were not aware of any other publications with evalua-
tion according to the metrics we propose. A major reason for
this is that most approaches to automatic music generation
are more concerned with imitating certain styles of music
than with music theory itself. To provide a certain degree
of comparison, we analyzed 100 randomly chosen Bach-like
chorales from the Bach Doodle data set [26], which were
generated using Coconet [20]. However, this is not a direct
comparison. First of all, the input is quite different. In contrast
to our random input constraints, the Bach Doodle data set
contains pieces generated from single complete melodies that
were input by actual users, and Coconet always generated the
same three accompaniment voices. In particular, users might
have inserted unmelodic intervals in their input melodies,
which would cause worse results for Coconet. Furthermore,
the goal of Coconet is to mimic Bach rather than to adhere
to music theory. As can be seen in figures 3 through 5, our
algorithm significantly outperforms Coconet with respect to
several music theoretical metrics.

2) Evaluation Criteria: As evaluation criteria, we imple-
mented several metrics that count how well the rules of music
theory of polyphonic voicing were adhered to. Since none
of these rules are completely absolute, we also analysed the
original 100 sections of Bach’s chorales, which were turned
into constraints as described above. The goal is to obtain
statistics as close as possible to those extracted from Bach’s
chorales or even more strongly adhere to music theory. Note
that since we do not use random sampling, which would
naturally result in the same statistics, the achievement of our
goal would not be caused by mathematical necessity, but
instead confirm our hypothesis that polyphonic voicing can
be treated as an optimization problem. In the following, we
discuss several aspects of music theory.

3) Relative Motion Direction: There are three types of
relative motions between two voices: Moving into the same
direction (similar motion), moving into opposite directions
(contrary motion) and only one voice moving while the other
one does not (oblique motion). According to music theory,
contrary motion is desirable and should occur often.

As can be seen in Fig. 3, our algorithm comes quite close to
the statistics extracted from Bach’s chorales, especially thanks
to the relative motion correction factor Fz (7). There is overall
a bit more oblique motion in the automatically generated
results, indicating that the voices move a bit less than in Bach’s
chorales.

4) Parallel Motion and Consecutive Intervals: Parallel oc-
taves and fifths, i.e. two voices moving from one of said
intervals into the same, and hidden parallel octaves and fifths,
i.e. two voices moving in the same direction and ending up
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Fig. 4. Occurrence of relative motion that should be avoided. It is successfully suppressed by the learned relative motion correction factor Fg.
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Fig. 5. Occurrence of melody interval types. Music theory encourages the use of small step intervals for smooth voice leading. Large or dissonant intervals
are classified as unmelodic (see section VI-A). Our new model generates significantly more steps instead of skips compared to the old model, which leads to
smoother voice leading. The results of Coconet might be affected by the fact that users could have input leaps or other unmelodic intervals.

in one of said intervals, are to be avoided in polyphonic
voicing, although the rule for hidden parallels is less strict.
Also consecutive seventh and ninth intervals between two
voices should be strictly avoided.

A weakness of our previous model [3][4] was that the
avoidance of parallel motion could not be trained from data,
but had to be suppressed by decreasing voicings including
such motion with factors requiring manual tuning. In our new
model the suppression of parallel motion can be successfully
learned from data as can be seen in Fig. 4.

5) Smooth Voice Leading: In order to obtain smooth
melodies, music theory recommends the use of small melody
intervals. Furthermore, the following intervals are considered
melodic and others should be avoided: Minor and major
second, minor and major third, perfect fourth, perfect fifth,
ascending minor sixth and perfect octave. For the evaluation
result, unison intervals were ignored, since they can also occur
in rhythmic function unrelated to voicing.

Smooth voice leading was a major weakness of our previous
model [3][4], where generated results contained around 10%
more skip intervals than Bach’s chorales. Our new model
significantly improves on this point, generating only slightly
less step intervals than found in Bach’s chorales.

B. Subjective Evaluation

Evaluation of music is inherently difficult due to differences
in taste. Therefore, we first and foremost invite the reader
to try our system themselves at http://160.16.202.131/music_
completion_apsipa. In Fig. 2 we provide some exemplary
results generated from randomized constraints for music the-
oretic evaluation as described in the previous section.

The authors impression of the results generated by the
presented algorithm is that they are generally pleasing to the
ear. Nonharmonic tones are rarely out of place and harmony
transitions are generally smooth. When voicing rules are
violated it is often not very noticeable or forced by input
constraints. The major weakness of the generated results is
their lack of structure. The melodies can feel to be moving
aimlessly albeit smoothly, and the harmony progressions often
lack metrically emphasized resolutions. Therefore, the system
still relies on the user to input constraints in order to establish
a fundamental structure for harmony and melody. Explicit
models for these aspects could further increase the number
of tasks that our system can perform without user input.

VII. CONCLUSION

We presented an algorithm for automatic music completion,
which allows a user to freely insert harmonic and melodic
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fragments for four voices and then generates a complete
four-part chorale from those fragments. We discussed a new
model for polyphonic voicing, which focuses on contextual
information that is relevant for music theory, while avoiding
biases that result from common musical patterns that are
not necessarily rules. We implemented an efficient nested
beam search optimization algorithm that filters harmonies and
voicings in a preprocessing step, resulting in significantly
improved computation speed, and allowing to easily handle
eighth note resolution.

The performance of our algorithm with respect to music the-
ory exceeds our previous results. In particular, the suppression
of parallel motion can be learned and does no longer require
manual tuning, and the generated melodies are significantly
more smooth. To improve our system, we are developing a
model for harmony that accounts for key modulation and
harmonic resolution, and one could further add a model for
melodic phrasing or self-similarity that would increase the
structure of melodies.
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