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Abstract—Automatic Speaker Verification (ASV) technology is
vulnerable to various kinds of spoofing attacks, including speech
synthesis, voice conversion, and replay. Among them, the replay
attack is easy to implement, posing a more severe threat to
ASV. The constant-Q cepstrum coefficient (CQCC) feature is
effective for detecting the replay attacks, but it only utilizes
the magnitude of constant-Q transform (CQT) and discards
the phase information. Meanwhile, the commonly used Gaussian
mixture model (GMM) cannot model the reverberation present
in far-field recordings. In this paper, we incorporate the CQT
and modified group delay function (MGD) in order to utilize the
phase of CQT. Also, we present a simple 2D-convolution multi-
branch network architecture for replay detection, which can
model the distortion both in the time and frequency domains. The
experiment shows that the proposed CQT-based MGD feature
outperforms traditional MGD feature, and performance can be
further improved by combining both magnitude-based and phase-
based feature. Our best fusion system achieves 0.0096 min-tDCF
and 0.39% EER on ASVspoof 2019 Physical Access evaluation set.
Comparing with the CQCC-GMM baseline system provided by
the organizer, the min-tDCF is relatively reduced by 96.09% and
EER is relatively reduced by 96.46%. Our system is submitted
to the ASVspoof 2019 Physical Access sub-challenge and won 1st
place.

I. INTRODUCTION

Automatic speaker verification (ASV) is a technology that
verifys a person’s identity through the voice, which is often used
in the security-related application. However, the vulnerability
to spoofing attack becomes a serious problem [1], [2]. There
are four types of spoofing attacks [3]: impersonation, voice
conversion, speech synthesis and replay. Impersonation tries to
mimic the target speaker voice only by the human itself. Voice
conversion, however, converts a talker’s voice to mimic the
target speaker’s voice. Speech synthesis tries to synthesize the
target speaker voice by computer directly. The replay attack
just needs to replay a pre-recorded speech which is spoken
by the target speaker. Among four types of spoofing attacks,
the replay attack is accessible and straightforward, because it
needs no specialized knowledge or skill and just needs to play
back the recording instead of mimicking the target speaker
voice. Research shows that the replay attack presents a high
risk to the ASV system [2], making it an urgent problem.

Replay detection aims to distinguish whether a speech signal
is a replay recording, or the voice spoken by humans directly.
There are two standard databases in this field: AVspoof [4] and

ASVspoof2017 [5] database. Both of them are collected on
real world. Recently, the ASVspoof 2019 [6] physical access
sub-challenge provides a database, which simulates the replay
attack signal in the computer. One advantage of the simulation
is to control variables conveniently. Another advantage is that
the simulation can reduce the cost of data collection, providing
a shortcut for creating a large-scale database.

In this paper, we describe our system submitted to the
ASVspoof 2019 challenge. A novel constant-Q transform (CQT)
[7] based modify group delay (MGD) [8] feature is proposed.
By replacing the short-time Fourier transform (STFT) used in
traditional MGD with CQT, the proposed feature can utilize
the phase of CQT. In order to calculate the CQT-based MGD
efficiently, we modify the extraction process of MGD. The new
extraction process is suitable for calculating the MGD based on
the various time-frequency analysis method, including the STFT
and CQT. Meanwhile, we present a simple 2D-convolution
multi-branch network architecture for replay detection. Our
model, named ResNeWt, adopts the same split-transform-merge
strategy as the one used in the ResNeXt [9] but replaces the
additive aggregate function used in ResNeXt by concatenation.
The experiment shows that the CQT-based MGD outperforms
the traditional MGD feature, and the performance can be further
improved by combining both magnitude-based and phase-based
feature. Further analysis reveals that our model can better detect
the distortion introduced by the playback device and far-field
recording compared with CQCC-GMM baseline model, and the
multi-branch architecture can improve the modeling capability
while maintaining the complexity at the same time.

The rest of this paper is organized as follows. In Section
2, we review the related works on spoof detection. Section
3 describes the proposed system. The experiment will be
described in Section 4, and the result will be discussed in
Section 5. In Section 6, we have a conclusion on this paper.

II. RELATED WORK

Feature Engineering Since the microphone and loudspeaker
are designed for recording and reproducing the sound as real
as possible, the voice after play back should preserve the main
information. Meantime, due to the non-ideal characteristics
of the physical device, some distortion will be induced. Thus,
researchers try to find an effective feature to detect such
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distortion. Todisco et al. [7] proposed the constant-Q cepstral
coefficient (CQCC) feature, which utilized CQT instead of
STFT to convert a voice signal into the frequency domain,
and then further transform it to the cepstral domain. The
experiment shows that CQCC is generalized well in multiple
datasets. Tom et al. [10] use the group delay function in the
replay detection task, which not only contains the magnitude
information, but also the phase information. Extending previous
work, we proposed the CQT-based modified group delay feature,
which is a combination of the CQT and modified group delay
function. Benefit from the CQT, the proposed feature can have
a higher time resolution for higher frequencies, and higher
frequency resolution for lower frequencies. Also, the phase
based feature is complemented with magnitude feature, so the
combination can further boost the performance.

DNN-based Classifier The standard Gaussian mixture model
(GMM) is a classic model in this field [3], [11], [12], due
to its excellent performance. Recently, researchers have been
attempted to use DNN in the replay detection task. Cai et al.
[13] utilized ResNet model with spectrogram as the feature,
FDNN and BLSTM model with CQCC as the feature to detect
the replay attacks. Tom et al. [10] utilized the class activation
mapping [14] technology to obtain the implicit attention
mechanism presented in ResNet, and further use the attention
to mask the group delay feature, then feed the new feature into
another ResNet model to make the decision. Lavrentyeva et al.
[15] utilized a Light CNN (LCNN) architecture to learn the
audio representation from the log normalized power magnitude
spectrogram extracted via FFT or CQT, and then use a GMM
model to distinguish between genuine and spoof classes using
the representation extracted by LCNN. Chen et al. [16] utilized
ResNet to learn from CQCC and MFCC feature. ResNeXt
[9] is an improved version of ResNet, it could be expected
to improve the replay detection accuracy. However, ResNeXt
only being applied in the ResNet with more than 50 layers.
Due to the limited training data, a complex model does not
work well. Thus, we proposed the ResNeWt, which can be
applied in 18-layer ResNet to gain accuracy effectively while
maintaining the complexity.

III. THE PROPOSED SYSTEM

In this work, we propose a novel CQT-based modified group
delay feature which incorporates the CQT and MGD for a
better representation of phase-related information. Also, the
ResNeWt model is utilized to detect replay attacks.

A. CQT-based Modified Group Delay Feature

The modified group delay (MGD) function [8] is one of
the most commonly used phase feature for speech recognition
[17] and converted speech detection [18]. The MGD is derived
from the group delay (GD) function, which is defined as the
negative derivative of the phase information:

τ(ω, t) = −d(θ(ω, t))

dω
, (1)

where θ(ω, t) is the phase spectrogram of signal x(n), n is the
index of the sample points, ω and t are the index of frequency
bins and frames, respectively. The GD can also be calculated
directly from the following formula:

τ(ω, t) =
XR(ω, t)YR(ω, t) +XI(ω, t)YI(ω, t)

|X(ω, t)|2
, (2)

where X(ω, t) and Y (ω, t) are the Fourier transform of the
signal xt(n) and nxt(n), respectively. The xt(n) is the signal in
frame t. The subscripts R and I denote the real and imaginary
parts of Fourier transform.

It should be noted that the GD function will become very
spiky when the energy of some frames (|X(ω, t)|2 in (2)) are
close to zero. The MGD function overcomes this by smoothing
the spectrum and reduce the dynamic range, defined as:

τm(ω, t) =

(
τ ′m(ω, t)

|τ ′m(ω, t)|

)
|τ ′m(ω, t)|α, (3)

where

τ ′m(ω, t) =
XR(ω, t)YR(ω, t) +XI(ω, t)YI(ω, t)

|S(ω, t)|2γ
. (4)

S(ω, t) is the cepstrally smoothed spectrum of X(ω, t), γ and
α are two parameters which are utilized to reduce the dynamic
range, varing from 0 to 1.

The traditional MGD is based on the STFT. Recent studies
show that CQT is more powerful than STFT in replay detection
task [7]. Thus, we try to incorporate the CQT and MGD
to construct a more powerful phase-based feature. However,
considering the varying number of samples used in the CQT
calculation of each frequency bin, the traditional frame-by-
frame extraction is infeasible. To overcome this problem, we
proposed a new MGD extraction process. It consists of three
steps. Firstly, calculating the spectrogram on the unframed
original signal x(n) and nx(n), denoted as:

X(ω, t) = Φ(x(n)), (5)

Y (ω, t) = Φ(nx(n)), (6)

where Φ(•) can be arbitrary time-frequency analysis method,
including the STFT and the CQT. Secondly, calculating the
auxiliary spectrogram to compensate the bias between the
spectrum calculated on a framed signal nxt(n), and the
spectrum calculated on an unframed original signal nx(n):

Y ′(ω, t) = Y (ω, t)− t× T ×X(ω, t), (7)

where T is the duration between the beginning of two adjacent
frames. Lastly, the MGD is calculated as

τm(ω, t) =

(
τ ′′m(ω, t)

|τ ′′m(ω, t)|

)
|τ ′′m(ω, t)|α, (8)

where

τ ′′m(ω, t) =
XR(ω, t)Y ′R(ω, t) +XI(ω, t)Y

′
I (ω, t)

|S(ω, t)|2γ
. (9)

Obviously, the new extraction process is suitable for both
traditional MGD and the proposed CQT-based MGD.
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B. ResNeWt

ResNet is a popular model in image recognition [19], also has
been utilized in the replay detection task [10], [13], [16]. The
key point of ResNet is its residual module, as demonstrated
in Fig. 1 (a). Based on the ResNet, ResNeXt [9] adopt a
splitting, transforming and aggregating strategy to gain accuracy
effectively while maintaining the complexity. A two-layer block
adopts the same strategy as used in ResNeXt is demonstrated
in Fig. 1 (b), however, it equals to trivially a wide, dense
module [9]. So the idea of ResNeXt is not suitable for the
model using the two-layer building block, for example, the
18-layer ResNet. Thus, we modify the aggregate function used
in ResNeXt to construct a new model, named ResNeWt, which
can be performed on all types of the ResNet. A basic block of
ResNeWt is demonstrated in Fig. 1 (c), which can be defined
as:

Y = X +
D

Ξ
i=1

fi(X), (10)

where Y is the output of the building block, X is an input tensor,
fi(•) can be an arbitrary function which splits the input first and
then transform them, D is the size of the set of transformations
to be aggregated, Ξ is the aggregate function that concatenates
the tensor along the channel dimension, defined as:

D

Ξ
i=1

[S
(i)
1 , ..., S

(i)
Ci

] = [S
(1)
1 , ..., S

(1)
C1
, S

(2)
1 , ..., S

(D)
CD

], (11)

where [S
(i)
1 , ..., S

(i)
k ] is a k-channel tensor.

In this work, an 18-layer ResNeWt (ResNeWt18) is con-
structed by reference to the structure of 18-layer ResNet
(ResNet18). The building block of ResNeWt18 has two 3x3
convolutional layers. The first convolutional layer is the same
as the one in ResNet; the second 3x3 convolutional layer is
split into 32 groups [20]. The number of the channel is doubled
compare with ResNet18. To prevent the potentially overfitting
problem, we add a dropout layer after the global average layer.
The overall structure is described in Table I.

IV. EXPERIMENTS

A. Dataset

The dataset provided in ASVspoof 2019 [6] physical access
sub-challenge was used in this paper. It contains the simulated
bona fide and the simulated replay spoofing access attempts.
The source signals for performing simulation are from the
VCTK1 corpus. Room acoustics are simulated by Roomsimove
toolbox2 and replay devices are simulated using the generalized
polynomial Hammerstein model and the synchronized swept-
sine tool3. For more details, see [6].

B. Evaluation Metrics

In ASVspoof 2019 challenge, the minimum normalized
tandem detection cost function (min-tDCF) [6], [21] is used

1http://dx.doi.org/10.7488/ds/1994
2http://homepages.loria.fr/evincent/software/Roomsimove 1.4.zip
3https://ant-novak.com/pages/sss/

TABLE I
THE OVERALL ARCHITECTURE OF RESNEWT18. THE SHAPE OF A

RESIDUAL BLOCK [19] IS INSIDE THE BRACKETS, AND THE NUMBER OF
STACKED BLOCKS ON A STAGE IS OUTSIDE THE BRACKETS. ”C=32” MEANS
THE GROUPED CONVOLUTIONS [20] WITH 32 GROUPS. ”2-D FC” MEANS A

FULLY CONNECTED LAYER WITH 2 UNITS.

Stage Output Shape Detail

conv1 256× 128 7× 7, 64, stride 2

conv2 128× 64

3× 3 max pool, stride 2[
3× 3, 128,
3× 3, 128, C = 32

]
× 2

conv3 64× 32

[
3× 3, 256,
3× 3, 256, C = 32

]
× 2

conv4 32× 16

[
3× 3, 512,
3× 3, 512, C = 32

]
× 2

conv5 16× 8

[
3× 3, 1024,
3× 3, 1024, C = 32

]
× 2

1× 1
global average pool, dropout,

2-d fc, softmax

as the primary metric, which can be simply calculated as:

t-DCFmin
norm = min

s
βP cm

miss(s) + P cm
fa (s), (12)

where P cm
miss(s) and P cm

fa (s) are, respectively, the miss rate and
the false alarm rate of the countermeasure (CM) system at
threshold s, β is a cost which depends on the t-DCF parameters
and ASV errors (β ≈ 2.0514 in ASVspoof 2019 physical access
development set with the ASV score provided by organizers
[6]). The equal error rate (EER) [6] is also used as the
secondary metric.

C. Experimental Setup

1) Feature: In this work, we utilized the STFT and the CQT
to extract the magnitude-based or phase-based time-frequency
representation (TFR). They were:

• Magnitude-based feature: The traditional log power mag-
nitude spectrogram based on FFT (Spectrogram), Mel
scale filter banks (MelFbanks) and log power magnitude
spectrogram based on CQT (CQTgram).

• Phase-based feature: The tranditional MGD feature and
the proposed CQT-based MGD (CQTMGD) feature.

Spectrogram and MelFbanks were extracted with 50 ms frame
length, 32 ms frame shift, 1024 FFT point, Hamming window.
Total of 128 Mel filter banks was extracted in MelFbanks. MGD
was extracted with 50 ms frame length, 25 ms frame shift,
Hamming window, 1024 FFT point, α = 0.6, and γ = 0.3.
CQTgram and CQTMGD were extracted with 32 ms frame
shift, Hanning window, 11 octaves, and 48 bin per octave. For
CQTMGD, we set α = 0.35 and γ = 0.3. All the features
were truncated along the time axis to reserved exactly 256
frames. The feature less than 256 frames would be extended by
repeating their contents. Finally, for simplicity, all the features
are resized to 512× 256 by bilinear interpolation.
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Fig. 1. Demonstration of the building blocks. (a) A block of ResNet [19]. (b) A block adopts the same strategy as used in ResNeXt [9].
(c) A block of ResNeWt. A layer is denoted as (#input channels, kernel size, #output channels).

TABLE II
RESULTS ON ASVSPOOF 2019 PHYSICAL ACCESS CHALLENGE

Description System
Dev Eval

t-DCFmin
norm EER(%) t-DCFmin

norm EER(%)

Baseline LFCC-GMM [6] 0.2554 11.96 0.3017 13.54
CQCC-GMM [6] 0.1953 9.87 0.2454 11.04

Other Teams

T24 [22] 0.0114 0.44 0.0215 0.77
T10 [22] 0.0065 0.24 0.0168 0.66
T44 [22] 0.0032 0.13 0.0161 0.59
T45 [22] 0.0054 0.30 0.0122 0.54

Single System
(Magnitude)

Spectrogram 0.0882 3.15 — —
MelFbanks (A) 0.0428 1.70 — —
CQTgram (B) 0.0110 0.39 — —

A&Ba(C) 0.0093 0.41 0.0134 0.52

Single System
(Phase)

MGD (D) 0.0246 0.97 0.0465 2.15
CQTMGD (E) 0.0149 0.54 0.0250 0.94

Fusion
C+Db 0.0061 0.28 — —
C+Eb 0.0072 0.31 — —

C+D+Eb 0.0049 0.20 0.0096 0.39
a A&B: concatenating the feature A and B along the frequency axis4.
b C+D+E: fusion by averaging the scores of subsystems C, D, and E.

2) ResNeWt: The ResNeWt18 was optimized by Adam
algorithm with 10−3.75 as learning rate and 16 as batch size.
The training process was stopped after 50 epochs. The loss
function was the binary cross-entropy between the predictions
and targets. The dropout radio was set to 0.5. The output of
the ”bona fide” node at last full connection layer was obtained
as the output score (before softmax).

3) Fusion: A score level fusion was performed to combine
the models trained by different features. For the sake of
simplicity, the ensemble system averages the output score of
all subsystems. A greedy-based strategy was used in selecting
subsystems. First, the best system was chosen. Then one system
was been selected greedily each time according to the min-
tDCF performance of the ensemble system evaluated on the
development set. The selection process would not stop until
the performance was stable.

V. RESULTS AND DISCUSSION

A. Results on ASVspoof 2019

4Specially, We do not resize the shape of the concatenated feature, so it
equals to 656× 256 (656 = 528(CQTgram) + 128(MelFBank)).

TABLE III
DEFINITION OF ATTACK SOURCE

Factor Parameter
Level

A B C

Da distance (cm) 10 ∼ 50 50 ∼ 100 > 100

Qb
OBc (kHZ) ∞ > 10 < 10
minFd (Hz) 0 < 600 > 600
linearitye (dB) ∞ > 100 < 100

a D: attacker-to-talker distance.
b Q: replay device quality.
c OB: occupied bandwith.
d minF: lower bound of OB.
e linearity: linear/non-linear OB power difference.

Table II depicts a quantitative comparison of the replay
detection systems. Among all single systems, the CQTgram
achieve the lowest EER and almost the lowest min-tDCF. The
concatenation of CQTgram and MelFbanks slightly improves
the min-tDCF, meanwhile, also affects the EER. We attribute it
to the variance of the model, thus the main contribution is still
from the CQTgram. Also, the CQTgram performs better than
Spectrogram or MelFbanks, and the CQTMGD performs better
than MGD as well. These phenomena indicate that the CQT
are more suitable than FFT in this dataset/task. The fusion
of single systems further improves performance, indicate the
complementarity between magnitude and phase, and between
CQT and FFT. Also, the performance of CQTMGD feature is
competitive, and a further improvement achieved when it is
fused with other feature, demonstrated the effectiveness of this
feature.

Finally, the fusion system and the three subsystems were
submitted to ASVspoof 2019 challenge. As we can see in Table
II, all systems have a stable performance on both development
and evaluation set, indicating a good generalization ability of
the model. All the systems perform better than the best baseline
system (CQCC-GMM), also better than the systems submitted
by other teams.

B. Error Analysis

To better understand the model’s ability, let us look at the
performance against different attack sources in detail. Two
factors have been used in identifying the attack sources:
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TABLE IV
REPLAY DETECTION PERFORMANCE UNDER DIFFERENT ATTACK

CONDITIONS (EER(%)) ON THE EVALUATION SET

Model CQCC-GMM ResNeWt (fusion)

D Q A B C A B C

A 25.28 6.16 2.13 0.86 0.30 0.12
B 21.87 5.26 1.61 0.49 0.33 0.09
C 21.10 4.70 1.79 0.54 0.30 0.09
∗ See in Table III for the meaning of the symbols.

TABLE V
CONTRIBUTION ANALYSIS ON THE ASVSPOOF 2019 PHYSICAL ACCESS

DEVELOPMENT SET5

Feature Model t-DCFmin
norm EER(%)

CQCC
GMM [6] 0.1953 — 9.87 —

ResNet 0.0501 ↓74.4% 1.98 ↓79.9%
ResNeWt 0.0419 ↓78.5% 1.67 ↓83.1%

CQTgram ResNet 0.0124 ↓93.7% 0.46 ↓95.3%
ResNeWt 0.0110 ↓94.4% 0.39 ↓96.1%

MGD ResNet 0.0314 ↓83.9% 1.28 ↓87.0%
ResNeWt 0.0297 ↓84.8% 1.22 ↓87.6%

CQTMGD ResNet 0.0223 ↓88.6% 0.78 ↓92.1%
ResNeWt 0.0180 ↓90.8% 0.71 ↓92.8%

• Recording Distance (D): the distance between the talker
and the attacker’s microphone when the attacker secretly
recorded the talker’s voice. This factor affects the quality
of the recording, specifically, the degree of reverberation.

• Playback Device Quality (Q): the quality of the playback
device when the attacker performs the replay attack. This
factor is related to the degree of distortion in the frequency
domain.

Each factor is categoried into three levels, and the detail
information is shown in Table III.

As shown in Table IV, the ResNeWt works well in all
conditions, while the GMM model shows a much higher EER
when the quality of the playback device is well (Q=A). For the
factor of recording distance, the performance is simular between
D=B and D=C, but much differently between D=A and D=B.
If we let the Q=A, and then observe the performance between
D=A and D=B, we will find that the relevant performance drop
of the ResNeWt model ( (0.86 − 0.49)/0.86 = 43.02% ) is
much more than the GMM model ( (25.28− 21.87)/25.28 =
13.49% ). This indicates that the ResNeWt model has a better
ability to detect the distortion introduced by far-field recording.
One possible reason for this is that the reverberation present
in the far-field recordings will cause time-domain distortion.
However, the GMM is a frame-level model, that means it has
no ability to model the time-domain distortion. Benefited by
the 2D convolution, the ResNeWt can model the distortion
both in the time and frequency domains, so it has a better
ability to detect the reverberation.

C. Contribution Analysis

In Table V, the performance is increased dramatically when
the GMM is replaced by CNN, and a further improvement
achieved when the hand-crafted CQCC feature is replaced by
the low-level CQTgram. Also, the performance of CQTMGD
is better than MGD. This implies that the main contribution
of performance improvement comes from CNN’s superior
modeling capabilities, and the use of low-level feature get better
use of the modeling capabilities. Meanwhile, the performance
of ResNeWt is consistently better than ResNet, shows that
the ResNeWt further improves the modeling capability while
maintaining the complexity at the same time.

D. Attention Analysis

To have a better understanding of how the model works,
we further visualize the distribution of model attention by
class activation mapping (CAM) [14]. According to the binary
classification, the evidence that proves the input signal falling
to one category in the meantime indicating the absence of
the signal in another category. As we only concern about the
positive evidence, all the negative value in CAM is set to zero.

Fig. 2 demostrates the visualization of attention distribu-
tions. There are two obviously patterns. Firstly, the model
concentrates on the low frequencies (the green solid line box
in Fig. 2), indicating the importance of the low-frequency band.
This could explain why CQT works better than FFT since the
frequency resolution of CQT in low frequencies is much higher
than FFT, so such low frequencies are hardly distinguished
in FFT-based spectrogram. Also, we should be noticed that
this phenomenon is different from the conclusion found in the
ASVspoof2017 challenge that shows that the high-frequency
band has more information [23]. So it may relate to the dataset
and need further analysis.

Secondly, the model draws attention to the head and tail of
the signal (the white dashed box in Fig. 2), and we found most
of the signal has a leading and trailing silence. It indicates
that silence contains some efficient information to detect the
replay attack. However, it is not we expect to see, because
the attacker can easily trim the silence of the speech before
playback, then it is impossible to detect anything in the leading
and trailing silence.

VI. CONCLUSION

In this paper, we present the replay detection system
submitted to ASVspoof 2019 challenge. A novel CQT-based
MGD feature is proposed to utilized the phase of CQT. An
18-layer ResNeWt model is utilized to detect the replay attacks.
Our models have been evaluated on ASVspoof 2019 physical
access challenge dataset and show a significant improvement
on the ability to detect the distortion introduced by the playback
device and the ability to detect the reverberation introduced
by far-field recording, compared with CQCC-GMM baseline

5For better comparability, the structure of the ResNet here is the same as
Table I except for the C=1. Also, high-dimensional CQTgram feature is not
suitable for GMM. The ResNeXt is absent here because the 18-layer ResNeXt
does not exist.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

544



Fig. 2. Activation attention maps for ResNeWt with CQTgram. (Top / Bottom: The CAM of spoof / bona fide samples. The foreground
heatmap shows the position where the model considers this signal is not genuine. The title describes the corresponding

audio file name and output score. Middle: The score distribution on the development set. Best view in color.)

system. In the future, we will further analyze the method on
real-world datasets like ASVspoof2017 and AVspoof dataset.
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