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Abstract— A novel DOA method is proposed to deal with the DOA 
estimation in the presence of the unknown mutual coupling for nested 
arrays. By using a new expression of the steering matrix in the presence 
of mutual coupling, a novel expression of the receiving data vector in the 
virtual array field is available. Then, based on a modified direction 
matrix constructed with block matrix, which relates to space discretized 
sampling grid, the sparse Bayesian compressive sensing method applies 
to estimate a vector, which contains the signal powers information and 
the mutual coupling information. The problem of off-grid DOAs is also 
considered for sparse Bayesian compressive sensing. Based on the 
estimated vector, a peak searching is performed to estimate the initial 
DOA. Finally, the estimation of DOA is modified to initial estimate plus 
off-grid error value. The advantage of fully utilizing the degree of 
freedom of nested arrays is preserved in this proposed algorithm. 
Moreover, no complicated calculation is needed to obtain the mutual 
coupling coefficients or rearrange the position of array element. 
Theoretical analysis and simulation results show the effectiveness of the 
proposed algorithm. 

Index Terms—direction of arrival estimation, mutual coupling, nested 
array, off-grid model, sparse Bayesian learning method 

I. INTRODUCTION 

The direction of arrival (DOA) estimation is a major topic in 
phased arrays. Phased arrays have been successfully applied in radar, 
sonar and wireless communications [1]-[4]. In recent years, high 
degree of freedom (DOF) and high resolution with finite array 
elements have attracted the attention of researchers. The sparse array 
structure, the nested array (NA) and the co-prime array [5]-[6], can 
be transformed into a virtual uniform array by vectorizing the 
covariance matrix of the received data. Then, the DOA estimation is 
performed in such virtual array field, whose array elements number 
is more than the number of the physical array elements. Therefore, 
the number of estimable sources for the NA and the co-prime array is 
larger than the number of real physical array elements. Subsequently, 
a series of sparse array structures are proposed, such as generalized 
NA, super NA, k-times extended co-prime arrays et al. Although 
NAs and co-prime array are sparse, the space between some array 
elements is not large enough to ignore the mutual coupling between 
them. The classical DOA estimation techniques, such as L1-svd[7], 
MUSIC[8] and ESPRIT[9], suffer from a model mismatch in the 
presence of  the mutual coupling. Therefore, it is very meaningful to 
study DOA estimation in the presence of the mutual coupling. 

To reduce the mutual coupling between array elements, a series of 
methods, devising a methodical step via rearranging the dense 

subarray of sparse array, have been proposed. Junpeng Shi [10] et al 
has proposed a generalized NA configuration. This method has 
designed two flexible co-prime factors and the inter-element spacing 
of two concatenated uniform linear subarrays can be enlarged. Thus, 
the mutual coupling effect of the array is reduced. Chun-Lin Liu[11] 
et al has proposed a Super NA. In this NA structure, the coarray 
remains unchanged but the number of array elements with small 
inter-elements spacing is reduced. The mutual coupling effect is 
naturally weakened compared to the traditional NA. Subsequently, a 
high-order hyper nested arrays structure is proposed by Chun-Lin 
Liu [12] et al. CHEN Lu[13] et al has optimized the NA structure 
and has proposed two translational NA structures. This structure 
greatly increases the sparsity of the NA and reduces the mutual 
coupling effect between array elements. 

There are some researches tried to solve DOA estimation problem 
in the presence of the mutual coupling by modifying the estimation 
approach for some sparse array. Elie BouDaher[14] et al has 
proposed a method for co-prime arrays. This method needs to jointly 
estimate mutual coupling matrix, theirs DOAs and the source powers 
based on an optimization. The solution to the optimization problem 
is solved by the covariance matrix adaptation evolution strategy. 
However, it does not consider the case that the DOA is not fall on 
the space discrete grid. And his simulation results show that the 
estimate accuracy is not well. J.Dai [15] et al has proposed an 
iterative method to estimate DOA in the presence of mutual coupling 
based on sparse arrays. However, the method treats the sparse array 
as a subarray of a uniform linear array and cannot take full advantage 
of the increased DOFs for the sparse array. At present, no one has 
solved the DOA estimation problem of nested arrays with unknown 
mutual coupling from the perspective of estimation method. 

The compressive sensing approach is highly applied in the DOA 
estimation. The result accuracy depends on the space-sampling grid. 
It is better to consider the case that real DOA is off-grid. Zai 
Yang[16] had proposed off-grid model, which can applies to both 
single snapshot and multi-snapshot cases. Subsequently, a series of 
off-grid model are proposed [17]-[19]. Anup Das[20] had 
demonstrated by analyzing passive sonar data from the SWellEx-96 
ocean acoustic experiment. Yonghong Zhao[21] had proposed a 
method by using Bayesian learning based on an array covariance 
matrix for NA. However, no work is suited to the NA with unknown 
mutual coupling. 
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In this paper, a method to estimate the DOA in the presence of 
unknown mutual coupling for NA is proposed. By the aid of a new 
expression of the steering matrix in the presence of mutual coupling, 
a novel expression of the receiving data vector in the virtual array 
field can be obtained. Then, a sparse Bayesian method, considering 
the off-grid error, is employed to estimate a vector that includes the 
power information of signal sources and the mutual coupling 
information. The estimated vectors are used to estimate initial DOA 
via a peak searching. The off-grid error can be obtained by using 
sparse Bayesian method. The final DOA estimate is the sum of the 
initial DOA estimate and the off-grid error. The advantage of high 
DOF of NA is fully utilized, which makes the number of estimated 
signals exceed the aperture of physical array. The proposed 
algorithm does not need the mutual coupling matrix calibrating or 
rearrange the structure of the array. The simulation results show the 
effectiveness of the proposed algorithm. 

The rest of this paper is organized as follows: Section II reviews 
the signal with mutual coupling model of NA. Section III presents 
the DOA estimation method based on sparse Bayesian learning 
method. Simulation results are shown in Section IV. Section V 
concludes this paper. 

II. SIGNAL MODEL 

The NA concludes two or more ULA. At present, we use two 
ULAs, where the subarray 1 has 1M  elements with inter-element 

distance d and the subarray 2 has 2M  elements with inter-element 

distance  1 1M d  . The NA has 1 2M M M   elements. The 

spacing between the subarray 1 and the subarray 2 is d, which 
usually equal to half-wavelength of the signal. 

Assume that there are K far-field narrowband signals impinging 
on the array and DOAs of the signal are 1 2{ , ,..., }K   , respectively. 

When there is mutual coupling between the array elements, the 
received data is expressed as 

 ( ) ( ) ( ) ( ),n 1,2, ,n n n N  x CA s e    (1) 

where 
1 2( ) [ ( ), ( ), , ( )]T

Kn s n s n s ns  is the signal vector. 

( )ks n represents the kth signal at the thn  instant. ( )T  denotes 

transpose.  1 2( ) ( ), ( ), , ( )K   A a a a  is the array manifold 

matrix and 1 2(2 / )d sin (2 / )d sin (2 / )d sin( )= k k M kj j j
k e e e             a  is the 

steering vector of ( )ks n in the idea case, respectively. 

 1,2, ,id i M   is the position of the array. C is the mutual 

coupling matrix. ( )ne  is assumed to be temporally and spatially 

white noise, which is independent of the signals. The power of the 
noise is 2

n . In this paper, we only consider that all signals are 

independent of each other. 

The covariance matrix of the received data can be expressed as 
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with  = ( ) ( )i i iE s n s n   1,2, ,i K  ， H( )  denotes conjugate 

transpose.  

By vectorizing the covariance matrix
XR  , a vector z can be 

obtained as 

 
 

* 2

* 2

1

( ) ( )X v n M

K

i i i n M
i

vec 

 


  

  

z R A A p 1

1

 

 a a



  (4) 

where * * * *
1 1 2 2 K K

     A A       a a a a a a and ( )i ia Ca . 

 1 2

T

v K  p  . 1 2[ , , ]T T T T
M M1 e e e and me  denotes a 

length-M column vector. The mth element in me  is 1 and other 

elements in me  is 0. *( )  denotes conjugate.   is the Kronecker 

product and  is the Khatri-Rao product. 
The vector z  can be regarded as the received data expression of a 

virtual array field whose corresponding array manifold matrix is  
*A A  . vp  can be considered as the virtual signal vector with only 

one snapshot. When there is no mutual coupling, we get ( )i ia a . 

A steering vector corresponding to a virtual ULA can be obtained 

after the duplicate removal and the rearrangement of *
i i a a . 

Therefore, the spatial smoothing processing (SSP) or the 
compressive sensing approach can be applied to deal with DOAs 
estimation problem by using only one snapshot data z . When there is 
mutual coupling, ( )i i Ca a is different from ( )ia . If using the 

traditional method for the NA in the virtual array field, the DOA of 
the signal cannot be estimated without the mutual coupling 
calibrating.  

III. THE PROPOSED METHOD 

In this section, we proposed a DOA estimation approach of the 
Bayesian compressive sensing in the presence of mutual coupling. In 
this paper, the NA is considered including two ULAs. The subarray 
2 of the NA is a uniform sparse array with inter-element 

distance  1 1M d  . The subarray 1 and the first element of the 

subarray 2 form a ULA with inter-element distance d. Ordinarily, the 
influence of the mutual coupling is related to the element distance of 
adjacent elements. We only consider the case that the mutual 
coupling has a presence in the ULA part and an absence from the 
sparse part. 
A. A novel expression of received data in virtual array 

Here, we consider that there is unknown mutual coupling. The 
mutual matrix C  is unavailable now. The mutual coupling matrix of 
the uniform linear array is usually modeled with a banded symmetric 
toeplitz matrix. Suppose that the number of the non-zero coefficient 
of the mutual coupling for the NA is m and the coefficients of the 
mutual coupling are (i 1,2, ,m 1)ic   . The mutual coupling matrix 

 C  for the NA can be expressed as  
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  (5) 

According to the banded symmetric toeplitz characteristics, we 
can re-express i

a  in the following way 

 ( ) ( )i i i  C T c a a   (6) 

where c is the non-zero mutual coupling vector 
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   1
1 11

T m
mc c 
 c     (7) 

For NAs, ( )iT  is easily obtained using the known steering 

vector i( )a .  ( )iT is a M m  matrix  and can be constructed as  

 1

2

ˆ ( )
( )
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i
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

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 
  
  
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where 

       1 1 2i i i   T T T   (9) 
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and 
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where  
,j k
 represents the element corresponding to the thj row 

and thk column of the matrix and  
j
  represents thj element, 

respectively. 
Therefore, we can get  

 
   

     

*

* *

= ( ) ( )

=

i i i i

i i

 
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
 

 

T c T c

T T c c

   

 

a a
  (12) 

Substituting (12) into (4), the vector of the received data in the 
presence of mutual coupling in the virtual array field can be 
expressed as 

 
     * * 2

1

2

=

( )

K

i i i n M
i

n M

   

 



  
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z T T c c 1

T p 1

 



  (13) 

where
2 2* * *

1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) M m K
K K             T T T T T T T    

and 1
,1 ,2 ,

2m K
c c c K

    p p p p   with  * T
, ( )c i i p c c   

 1,2, ,i K   . 

Assume that the whole DOA space is uniformly divided into D 

grid, marked as 1 2= D   
 θ    . The DOA estimation can be 

obtained by using the following optimization problem: 

 2

0 2
arg min   . .   D n Ms t    

p
p z T p 1



    (14) 

where  
* * *

1 1 2 2( ) ( ) ( ) ( ( ) (D D D          T T T T T T T      ） ）  

Replacing i with i
 in (8), ( )iT  can be obtained.  is a preset 

number with a small value. p  can be expressed as 

1
,1 ,2 ,D, , ,

2m D
c c c

    p p p p     ,where  , 1,2, ,c i i Dp   is a 

vector with dimension 2 1m  . 
This optimization problem can be solved by using LASSO method 

or the orthogonal matching pursuit (OMP) algorithm based on the 
block matching dictionary matrix. However, both of them cannot 
deal with the problem that DOAs is off grid of the dictionary matrix. 

We intend to adopt the approach of the Bayesian compressive 
sensing to estimate DOAs. 
B. The off-grid model for Bayesian compressive sensing 

In fact, the true covariance matrix XR  is replaced with the sample 

covariance matrix ˆ
XR  , which is calculated as  

    X
1

1ˆ
N

H

n

n n
N 

 R x x   (15) 

Vectorizing ˆ
XR yields the following vector 

   2ˆ= = = ( )X n Mvec      z R z z T p 1 z
    (16) 

Due to the limited number of snapshots, there is an error in the 
result of z


. As it in [22]，the error z  is an asymptotic normal 

distribution with AsN(0, )z W ,where ( ) /x x N W R R .By 

using ˆ ˆ ˆ( ) /x x N W R R instead of W, a prewhitening procedure is 

allowed to be performed to yield the single measurement vector as 

 1/ 2 1/2ˆ ˆ=   y W z W z z


   (17) 

where 1/ 2ˆ= AsN(0, ) z W z I  denotes a complex Gaussian white 

noise vector. 
When the DOA of the signal is not on the dividing grid, it will 

inevitably cause the grid mismatch and the estimate error will appear. 
If the real DOA is k , it can be expressed by using the 

corresponding estimated value on the grid 
kl

 as 

 
k kk l l      (18) 

where 
kl

 is the error between them and is generally supposed to 

be uniformly distributed in the siding-to-siding block 

[ 2, 2]l l with 2 1l      . By using Taylor formula and ignoring 

the expansion terms above first order, *( ) ( )k k T T can be 

rewritten as 
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  (19) 

 where {1,2, ,K}k   and {1,2, , }kl D  .  *( ) ( )
k kl l  
T T  is 

the first derivative of  *( ) ( )
k kl l T T  ,which can be labeled as 

( )
kl

b . Therefore, ( )T can be expressed as 

 ( )= e T T BΔ    (20) 

where 

 
1 1 2 2 K K

* * *( ) ( ) ( ) ( ) ( ) ( )e l l l l l l          T T T T T T T         (21) 

 
1 2 K

( ) ( ) ( )l l l     B b b b     (22) 

 
1 2 K

( )l m m l m m l m mblkdiag     
   I I I   (23) 

When 
kk l   ，there is =0

kl
 . Otherwise, 0

kl
  .  Substituting 

(20) into (16), z


can be expressed as  

   2= e n M   z T BΔ p 1 z
    (24) 

Naturally， y can be re-expressed as 

 2 1/2ˆ
n M    y Gp W 1 z   (25) 

where 

 1/2ˆ ( )e
 G W T BΔ   (26) 

Noted that 
kl

 and 
kl

 ( 1,2, , K ) are the ones to be estimated.  

According to (26), the complete dictionary matrix for Bayesian 
compressive sensing can be constructed as 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1068



 

  1/2ˆ
D D D

 G W T B Δ    (27) 

where  

 
1 1( ) ( ) ( )D D     B b b b     (28) 

   1 2D m m m m D m mblkdiag      I I I   (29) 

  In the theory of compressive sensing, (25) can be expressed as 

 2 1/ 2ˆ
n M    y Gp W 1 z     (30) 

  Here, the DOA estimation is based on block matching. When 

kl
  {1,2, , }kl D  is the estimated value for k  {1,2, ,K}k   , 

the thkl
2 1m   dimension vector in p will approximately equal to 

* T( ) kc c  .The other elements in p is approximately  to be 0. 

C. Sparse Bayesian learning method for the DOA estimation in the 
presence of unknown mutual coupling  

Since the angle of the target signal with mutual coupling does not 
exist in the angle region we divide, we can adopt we adopt the sparse 
reconstruction idea based on sparse Bayesian learning method. 
Therefore, the iteration process is given as follow 

 
0

Hμ ΣG y    (31) 

 1 1 1 1
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Where  
i
  denote absolute operation and the thi  iteration, 

= ( )Ddiagδ  , ( )diagΛ α , c and d are fixed parameters which are 

required to approximate to 0. For convenience, we replace y  with 
2 1/ 2ˆ =n M    y y W 1 Gp z   . 

Observing (27) and (30), it is easy to find that the proposed 
method is not to estimate the power of the signal directly, but to 

estimate the vector  , 1,2, ,c i i Dp  . Therefore, the final power to 

estimate the DOA should be calculated as 

  
22 2ˆ ((m ( 1) 1) : (m )) , 1,2, ,j j j j D         (38) 
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In fact, due to finite snapshot, there is a big value for ˆ
j  when 

there is a DOA in i
 . Otherwise, there is a small non-zero value 

for ˆ
j . We perform spectral peaking search on ˆ

j . Finally, the 

estimated K DOAs will be calculated as ˆ ,
k kk l l     1,2, ,k K  , 

where 
1 2
, , ,

Kl l l     are the DOAs corresponding to K Maximum 

Peak Points of ˆ
j . 

IV. SIMULATION RESULTS 

In this section, we consider some simulations that demonstrate the 
DOA estimation of signals in the presence of unknown mutual 
coupling by using the proposed approach. Here, a NA with 

6M  ( 1 23, 3M M  ) omnidirectional sensors with 2d   is 

considered. The position of array is [1,2,3,4,8,12]d. The number of 
the non-zero coefficient of the mutual coupling 4m   and 

 1,0.2121 0.2121 , 0.0882 0.1214 , 0.0588 0.0809i i ic      . The 

signal is independent of each other. The scanning angle area is 
( 90 ,90 )   . The array’s additive noise is a Gaussian zero-mean 

spatially and temporally white process and 2 1n  . 

 
Fig.1 Resolution ability of DOA estimation 

A. The DOA estimation of the signal number less than the number 
of the array elements 

Because the traditional MUSIC in physical array field is limited 
by the DOF, we consider the case that the source number is smaller 
than the element number of the physical array. Results of the 
traditional MUSIC in the physical array field and the MUSIC with 
SSP in the virtual array field without the mutual coupling calibration 
are compared with results of three compressive sensing methods, the 
LASSO with prewhitening procedure, the OMP algorithm[23] and 
the sparse Bayesian learning method. 

Assumed that SNR is 10dB and the number of snapshot is 1000. 
For the sparse Bayesian learning method, we 

set 41, 0.01, 0.001, 10l c d       , with 2000Q   being the 

maximum number of iteration. We can initialize 0 , α and 

D as 0 100 var( )  y , H 2ˆ= W Mα yT , and 2 1D m D
 0  ,where D is 

the number of grid. For compressive sensing method of LASSO, we 
set 1.28t  . The DOAs of signals are 21.1 , 5.2 ,10.1 ,30.1[ ]      . 

As shown in Fig.1, the traditional MUSIC in the physical array field, 
the MUSIC with SSP in the virtual array field without the mutual 
coupling calibration, the compressive sensing method of LASSO 
with prewhitening procedure and the OMP algorithm fails to 
estimate the DOA, while the sparse Bayesian learning method works 
well. The performance of the traditional MUSIC in the physical 
array field and the MUSIC with SSP in the virtual array field without 
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the mutual coupling calibration suffers from the mutual coupling 
effect. The OMP algorithm is affected by the estimated angle and it 
also constrained by Least Squares Principle. The performance of the 
OMP algorithm has degraded when the DOA of signals is not very 
far apart. The prewhitening procedure may be the cause of the 
LASSO algorithm failure. 

 
Fig.2 Resolution ability of DOA estimation performance analysis of the 

proposed algorithm 

B. The DOA estimation of the signal number more than the 
number of the array apertures 

In this part, we consider the case that the number of signals is 
more than the element number of the physical array. Results of the 
MUSIC with SSP in the virtual array field without the mutual 
coupling calibration and two compressive sensing methods, the 
LASSO without prewhitening procedure and the OMP algorithm, are 
compared with results of the sparse Bayesian learning method. 

The DOAs of signals are 45.3 , 30.51 ,  14.98 ,  0.5[ ,  15.5 ,          

30.1 ]  . 0.5l  . Simulation results are shown in Fig.2. Although 

the compressive sensing method of LASSO without prewhitening 
procedure can estimate the DOA of the signal, there are many false 
peaks, whose peak values are nearly equal to the true peak value (see 
local enlargement in Fig. 3). It's not easy for us to distinguish the real 
peaks. The MUSIC with SSP in the virtual array field without the 
mutual coupling calibration fails to work due to the presence of the 
mutual coupling. The OMP still fails to estimate the DOA. The 
sparse Bayesian learning method works best. 

 

Fig.3 simulation results of the OMP algorithm, the LASSO algorithm and the 
Bayesian algorithm 

C. The DOA estimation of the signal number much less than the 
number of the array apertures 

The OMP algorithm, the LASSO algorithm without prewhitening 
procedure and the sparse Bayesian learning method are all based on 
compressive sensing. Among the three algorithms, the OMP 

algorithm has the greatest influence on the angle measurement 

results. In this part, only two sources at 2.15   and 26.38  are 

considered to validate these algorithms effectiveness for the case 
with small signal number. The number of snapshots is 1000 and 
SNR=10dB. Results of three algorithms are shown in Fig.3. The 
LASSO algorithm without prewhitening procedure still has many 
false pesks. Fortunately, two peaks correspond to the true estimates 
of LASSO algorithm are higher than the false peaks. The OMP 
algorithm only has two peaks. However, the estimate accuracy of the 
OMP algorithm is worse than the sparse Bayesian learning method. 
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Fig.4 RMSE versus number of snapshot 
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Fig.5 RMSE versus number of SNR 

D. The DOA estimation performance 

In order to observe the performance of the OMP algorithm, the 
LASSO algorithm without prewhitening procedure and the sparse 
Bayesian learning method better, Root Mean Square Errors (RMSE) 
varied with signal-to-noise (SNR) and number of snapshots  are 
studied. Two sources at 5.24   and 16.15  are considered. 

 In Fig.4, the number of snapshots varies from 50 to 350 and 
SNR=10dB. As shown in Fig.4, RMSE for all algorithms decreased 
as the number of snapshots increased at the beginning. When the 
snapshot number is greater than 200, RMSE for all algorithms 
gradually converges. When snapshot is small, the sample matrix 
y estimated using finite snapshots is imprecise. Therefore, the result 

with small snapshot is not good as the estimate one with large 
snapshot. The performance of the OMP algorithm is worst and the 
performance of the sparse Bayesian learning is best. 

In Fig.5, the SNR varies from 0dB to 20dB and T=1000. As 
shown in Fig.5, we can know that the estimated accuracy of high 
SNR is better than the one of low SNR. Besides, the LASSO 
algorithm can’t deal with the problem of off-grid. The estimate 
results are worsening than the proposed algorithm. The orthogonal 
complete basis matrix of the OMP algorithm is susceptible to local 
convergence, which makes the result inaccurate. It can also be 
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clearly seen from the Fig.4 and Fig.5 that the OMP algorithm is 
slightly bad than LASSO algorithm and the proposed al gorithm. The 
proposed algorithm can estimate the DOA very well. 

V. CONCLUSIONS 

A DOA estimation method based on sparse Bayesian learning 
method in the presence of unknown mutual coupling is proposed. 
This novel algorithm is able to solve problem that there are unknown 
mutual coupling and off-grid mismatch together. Besides, no 
complicated calculations are needed to obtain the mutual coupling 
coefficients or rearrange the position of array element. The DOF of 
the NA is fully utilized in this proposed method. Simulation results 
demonstrate the effectiveness of the propose algorithm. 
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