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Abstract—Speech-to-Singing (STS) conversion aims at con-
verting one’s reading speech into his/her singing vocal. The
prior work was mainly focused on transforming the prosody
of speech to singing, however, there exist prominent differences
between the spectra of speech and singing, which need to be
transformed as well. In this paper, we propose to make use
of parallel multi-speaker speak-sing data to develop a speaker-
independent spectral mapping model, which is conditioned on
i-vector to generate target speaker/singer identity. The model is
therefore called speaker conditioned spectral mapping model.
The converted singing spectra are then used together with
prosody features to synthesize the target singing. We investigate
the effectiveness of i-vector based average model adaptation
to model the differences between speech and singing spectra
for a specific speaker. The proposed model does not require
parallel speak-sing data from target speakers during training.
The experimental results conducted on NUS-48E and NUS-HLT-
SLS database indicate that the proposed approach significantly
outperforms the baselines in terms of quality and similarity.

I. INTRODUCTION

Speech-to-Singing (STS) conversion potentially enables var-
ious innovative applications in music production and entertain-
ment. Synthesizing personalized singing just by reading lyrics
of a song is appealing to users, especially to those who are
not talented singers [1]. However, STS conversion is not trivial
[2], as it requires careful manipulation of prosody and proper
mapping of acoustic characteristics from speech to singing
signals [3].

The STS conversion aims to convert the reading speech into
singing according to the reference prosody while preserving
the speaker identity. The basic idea of STS conversion is to
find a mapping function to transform the prosody and spectral
features from reading speech to those of reference singing.

Two major methods have been studied for prosody transfor-
mation, namely, template-based speech-to-singing conversion
(TSTS) [1], [4]–[6], and musical score based speech-to-singing
conversion (MSTS) [3], [7]. In TSTS, the reference prosody
is obtained from a singing template by a trained singer. The
lyrics of a song read by a user are first aligned with singing
template by different alignment techniques [1], [4], [5], [8].
The aligned spectral features from speech and fundamental
frequency (F0) contour extracted from the singing template
are then used to generate converted singing. Alternatively, the
reference prosody in MSTS is obtained from synthetic musical
scores, such as MIDI files [3], [7]. The prosody transformation
is conducted by building singing F0 contour from musical
scores in the way of controlling F0 fluctuations [3], [7]

or performing vibrato modeling by single Gaussian Mixture
Model (GMM) [9]. Spectral parameters of reading speech are
then aligned by duration control models [3], [7], [10]. Singing
output is synthesized by modifying aligned speech spectrum
[7] together with transformed prosody.

Spectral transformation is as important as prosody trans-
formation in STS conversion, since significant spectral dif-
ferences exist between one’s speech and singing including
the singing formant [11]–[13] and the resonance tuning by
singing F0 [7], [14]. In zero effort approaches, the prosody
of the synthesized singing follows the lyrical alignment of
the template, while the speech spectrum is directly used
for synthesizing singing [4], [5] in TSTS. Some spectral
conversion techniques were studied, for example, to adjust
the speech spectrum according to the vibrato information of
template singing F0 [9], or to make use of the weighted
linear and shifting functions [7], [10] to convert the spectra of
vowels from speech to singing. However, the spectral control
model in [7] requires empirical and hand-crafted settings
of parameter values, which is not suitable for large scale
deployment. In addition to these mathematical adjustments of
speech spectrum, GMM and weighted frequency warping [2]
voice conversion methods have also been adopted for STS
spectral mapping. We note that the results reported in [2] show
that they do not outperform the spectral control model [7].

Inspired by the success of average modeling approach
to voice conversion [15]–[21], text-to-speech [22]–[24] and
speaker adaptation [25] technique, we propose a speaker-
conditioned spectral mapping model for STS conversion. To
preserve speaker identity during the conversion, we augment
one’s speech spectra with her/his speaker identity features (i-
vectors) in the network input. According to the studies in [10],
[14], [26], [27], the amplitude of formants in singing voices
is modulated in synchronization with the vibratos in singing
F0 contours. Hence, we introduce the singing F0 and AP as
joint features to train the spectral mapping model.

The main contributions of this paper include (a) we pro-
pose a data-driven approach to learning a speaker-conditioned
spectral mapping function that is a departure from the hand-
crafting, frequency warping or speaker-dependent spectral
mapping; (b) the proposed approach does not need parallel
speak-sing data from target speakers during training, which
is more practical; (c) the proposed model better retains target
speaker’s identity by augmenting the network input with i-
vectors [28].
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Fig. 1. Block diagram of the training and conversion stages for Speaker
Dependent spectral mapping model (SD-MCC).

The rest of this paper is organized as follows. Section II
demonstrates two common techniques for spectral conversion.
In Section III, we motivate the idea of speaker-conditioned
spectral mapping between speech and singing, and devise
the model by specific deep learning architecture. Evaluations
of both objective and subjective results will be presented in
Section IV. In Section VI, we summarize the contributions of
this paper.

II. SPECTRAL MAPPING FROM SPEECH TO SINGING

We first study two simple techniques projecting the spectral
features from speech to singing.

A. Zero-effort transfer

We review the TSTS without spectral mapping as zero-
effort baseline. Given parallel speech and template singing
utterances, we first extract Mel Cepstral Coeficients (MCCs),
fundamental frequency (F0), aperiodic component (AP) and
low-time cepstra (LTC). We then apply dynamic time warping
(DTW) [29] to the LTC features [8] to obtain the alignment
between speech and singing. With the frame-wise alignment,
we can copy over the MCCs from speech to singing, and use
the F0 and AP from the singing template to synthesize singing
output.

B. Speaker-dependent Spectral Mapping (SD-MCC)

If the speak-sing parallel data are available for a user (target
speaker), we can build a speaker-dependent spectral mapping,
that we refer to as SD-MCC in Fig. 1. The spectral mapping
can be implemented with deep learning techniques.

1) Training Stage: During training in Fig. 1 (a), given a
collection of parallel speak-sing utterances from the target,
the singing MCCs (Bm ∈ RDm×N ) and aligned speech MCCs
(Am ∈ RDm×N ) are first obtained by feature alignment, as
described in Section II-A. Dm denotes the dimensions of MCC
features, and N denotes the frame number. Then, the aligned
speech MCCs Am and singing MCCs Bm serve as the model
input X = Am and output Y = Bm respectively. We can
train a model by applying a supervised training to predict Y.

Y = F (X) + e, (1)

where e is the prediction error.

2) Run-time Conversion Stage: At run-time in Fig. 1 (b),
given parallel data form target’s speech and template singing,
we first obtain AP (B′ap ∈ RDap×N ) and F0 (B′f0 ∈
RDf0×N ) features from template singing and aligned MCCs
(denoted as A′m) from speech. Df0 and Dap denote the
dimensions of F0 and AP features, respectively. Then, the
constructed input X′ = A′m are taken by the trained mapping
model to predict the converted MCCs Ŷ ( where Ŷ =
B̂m ∈ RDm×N ) as:

Ŷ = F (X′). (2)

The converted MCCs Ŷ are then used together with F0
(B′f0) and AP (B′ap) parameters of singing template to
synthesize singing output.

3) Limitation: Although SD-MCC model learns a speaker
dependent spectral mapping from speech to singing success-
fully, it generally requires a number of speak-sing parallel
data from a target, which is not always available in real-life
applications. For each target, its SD-MCC model need to be
trained, which is computationally expensive and inconvenient.

III. SPEAKER-CONDITIONED SPECTRAL MAPPING

In this section, we present the proposed speaker-conditioned
spectral mapping with i-vectors. Fig. 2 shows the training
and run-time conversion stages of speaker-conditioned spectral
mapping model (SC).

A. i-vector Feature Extraction

We propose to condition a speaker independent model on
a speaker i-vector to maintain the speaker identity between
speaking and singing. We note that at run-time, we only have
spoken lyrics, therefore, the speaker i-vector is only extracted
from spoken lyrics both during training and at run-time. An
i-vector is a compact representation of a speaker model that
possesses the dominant speaker characteristics [28], [30]. It is
derived by a factor analysis approach from a total variability
space that is trained on a large amount of background data.

In this study, we extract an i-vector for each speaker to rep-
resent the speaker attribute for speech-to-singing conversion.
In this way, the network learns to distinguish the speakers
during training. At run-time conversion, we extract an i-vector
from the user (target), on which the conversion network is
conditioned to generate the singing voice with the target
voiceprint.

B. Methodology

1) Training Stage: During training in Fig. 2 (a), given par-
allel speak-sing utterances from multiple speakers {c1,...,cj},
we first extract i-vectors features {Ic1 ,...,Icj} where Icj ∈
RDI×N from multi-speaker speech. DI denotes the dimension
of i-vector and N demotes the number of frames. Then we
obtain singing F0 {Bc1

f0,...,Bcj
f0}, singing AP {Bc1

ap,...,Bcj
ap}

and singing MCCs {Bc1
m ,...,Bcj

m}. Aligned speech MCCs
{Ac1

m ,...,Acj
m} are also obtained by feature alignment.

Then, singing F0 (Bcj
f0

T ) and AP (Bcj
ap

T ) are augmented

to the aligned speech MCCs (Acj
m

T ) as the acoustic features
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Fig. 2. Block diagram of the training and conversion stages for the proposed Speaker-Conditioned spectral mapping model (SC).
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]T for a part of the model training

input. The i-vectors (IcjT ) are also augmented to the obtained
acoustic features, and final training input features are repre-
sented as {X1,...,Xj}, where Xj = [X̃cjT , IcjT ]T . Xj refers
to the features of j-th speaker. The paired input features and
singing MCCs features Yj= B

cj
m from all speakers, {{X1,

Y1},...,{Xj , Yj}}, are utilized to train the SC model.
2) Run-time Conversion Stage: At run-time as shown in

Fig. 2 (b), target i-vector (I′) is first extracted from target
speech. Given target (user’s) speech and template singing,
acoustic features are also constructed by concatenating tem-
plate singing F0 (B′f0), AP (B′ap) and the aligned speech
MCCs (A′m) following the same process as in Section II-B2.
Then the trained SC model is used to convert X′ =
[A′

T
m,B′

T
f0,B

′T
ap, I

′T ]T to Ŷ by Eq. 2, as shown in Fig. 2
(b).

We note that SD-MCC and SC models are applicable to
transform spectral features in both template-based speech-to-
singing (TSTS) and musical score based speech-to-singing
(MSTS). In TSTS, we obtain the F0 and AP parameters from
singing template, while in MSTS, we obtain the F0 and AP
parameters from control models [3].

IV. EXPERIMENT

We conducted several experiments to validate the proposed
speaker-conditioned spectral mapping model.

A. Database

Two databases, NUS-48E corpus [31] and NUS-HLT SLS
corpus [32], with parallel speak-sing data were used for system
implementations. The NUS-48E consists of 48 English songs
from 12 speakers/singers, including 6 males and 6 females,
where each speaker has 4 songs. The NUS-HLT SLS contains
100 English songs from 10 speakers/singers, including 5
females and 5 males, where each speaker has 10 songs. All
speech and singing data were resampled at 16kHz.

All above data, including 148 songs from 22 speakers (11
male and 11 female), were used in our experiments. For
multi-speaker training, 18 speakers were used, including all 12
speakers from NUS-48E and 6 singers (3 male and 3 female)
from NUS-HLT SLS. For multi-speaker testing and speaker-
dependent model training, 4 non-overlap target speakers were

selected from NUS-HLT SLS, including 2 female speakers
(Jesica and Nichole) and 2 male speakers (Understand and
Kenza).

B. Experimental Setup

We now compare several different spectral mapping models
that we propose and their variants in the experiments.
• Zero-effort: the template-based speech to singing model

without spectral mapping described in Section II-A.
• SD-MCC: the speaker-dependent spectral mapping

model, as described in Section II-B where the input only
consisted of MCC features (120-dim) formed by aligned
speech MCCs (40-dim) and their delta and delta-delta
coefficients.

• SD: a variant of the speaker-dependent spectral mapping
model. The dimension of model input was 127, including
aligned speech MCCs (40-dim), singing log(F0) (1-dim),
singing AP (1-dim) with their delta and delta-delta coef-
cients and the voiced/unvoiced flag (1-dim).

• SI: a variant of the proposed speaker-conditioned spectral
mapping model. The model input (127-dim) was same
as SD. We consider this multi-speaker training model as
speaker-independent model (SI).

• SC: the proposed speaker-conditioned spectral mapping
model with i-vectors. The dimension of model input was
187, including aligned speech MCCs (40-dim), singing
log(F0) (1-dim), singing AP (1-dim) with their delta and
delta-delta coefficients, the voiced/unvoiced flag (1-dim)
and i-vectors (60-dim).

A summary of the framework description with their training
sets can be found in Table I. All the objective and subjective
results were reported based on the 8 songs (174 utterances)
from 4 target speakers, where each target speaker provided 2
songs.

C. Model Training and Conversion

All spectral mapping models shared the same neural net-
work architecture, which consisted of two DBLSTM layers
with 512 hidden units in each layer. The network output
dimension was 120, including singing MCCs (40-dim) with
their delta and delta-delta coefficients. Adam optimizer was
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TABLE I
THE SUMMARY OF EXPERIMENT SETUPS OF VARIOUS SPECTRAL MAPPING MODELS, AND THE OBJECTIVE EVALUATION RESULTS.

Models Training set
# Training
utterances

Spectral
mapping model

Speaker
independent

I-vectors
included

Feature dimension
for model training MCD (dB)

Zero-effort N/A N/A No No N/A N/A 8.900
SD-MCC 32 songs from 4 target speakers (each 8 songs) 977 Yes No No 120 dims 7.124

SD 32 songs from 4 target speakers (each 8 songs) 977 Yes No No 127 dims 6.041
SI 108 songs from 18 speakers 2917 Yes Yes No 127 dims 6.265
SC 108 songs from 18 speakers 2917 Yes Yes Yes 187 dims 6.212

used for model training with the learning rate and momentum
of 0.002 and 0.9, respectively. The minibatch size was set to
10.

During the conversion phase, the Maximum Likelihood
Parameter Generation (MLPG) algorithm was employed to
refine the spectral parameter trajectory [33], followed by a
spectral enhancement post-filtering in the cepstral domain. The
APs and F0s features from singing template were used to
generate the singing signal. Additionally, Merlin toolkit [34]
was used for model training.

D. Feature Extraction

The WORLD vocoder [35] was used to extract the spectrum
(513-dim), AP (1-dim) and F0 (1-dim) for both speech and
singing utterances with 5 ms frame step. 40-dimensional
MCCs were computed from the spectrum using Speech Signal
Processing Toolkit (SPTK) 1. The frame alignment between
speech and singing was obtained by performing dynamic time
warping (DTW) [29] on LTC features [8] with word-level
annotations.

V. EVALUATIONS

Both objective and subjective evaluations were conducted
to compare the proposed approaches with baselines.

A. Objective Evaluation

Mel-cepstral distortion (MCD) [36] was employed as the
objective measure, which was defined as:

MCD[dB] =
10

ln10

√√√√2
D∑

d=1

(cd − cconvertedd )2 (3)

where cd and cconvertedd are d-th dimension of singing and
the converted MCCs respectively. D denotes the dimension of
MCCs. A lower MCD value indicates a smaller distortion.

We summarize five spectral mapping models and their
average MCD results in Table I. We first examine the effect
of spectral mapping for STS conversion. It shows that all
approaches using spectral mapping give lower MCD values
than zero-effort (8.900 dB) approach. This suggests that the
spectral mapping is essential in STS conversion. Secondly, we
evaluate the effectiveness of F0 and AP for model training. It
is showed that MCD drops from 7.124 dB (SD-MCC model)
to 6.041 dB (SD model), by incorporating F0 and AP into the
input feature. The results suggest that the spectral mapping

1https://sourceforge.net/projects/sp-tk/

benefits from singing F0 and AP parameters. Hence, SD model
will be used for comparisons in the rest of the experiments

We further compare the speaker-independent mapping with
the speaker-dependent mapping. It is observed that SI model
obtains a comparable result to SD model, with MCDs of
6.265 dB and 6.041 dB respectively. We also observe that
SC model (6.212) slightly outperforms SI model (6.265) in
terms of MCD, which indicates that i-vector further enhances
the performance of synthesized singing.

B. Subjective Evaluation

The Mean Opinion Score (MOS), AB preference tests were
conducted for subjective evaluations [37]–[40] on the quality
and naturalness of synthesized singing outputs. The XAB
preference tests was employed to assess the similarity between
synthesized singing and target singing. 12 listeners whose ages
range from 20 to 35 with normal hearing abilities participated
in all tests. For each test, 10 samples were randomly selected
from each system. In the MOS tests, listeners were asked to
rate the quality and naturalness ranging from 1 (bad) to 5
(excellent) for all systems. In AB preference tests, one singing
sample was picked from system A and another was from
system B. A listener was asked to select the better sample in
terms of the quality of synthesized singing. In XAB preference
tests, given reference target singing X, listeners were asked to
choose which one was more similar to X from samples of
system A and B.

Three sets of listening tests were conducted. 1) Quality tests:
MOS test of Zero-effort, SD-MCC, SD, SI and SC; 2) Quality
tests: AB preference tests of SC vs. Zero-effort; SD vs. SD-
MCC; SC vs. SD and SC vs. SI; 3) Similarity tests: XAB
preference tests of SC vs. Zero-effort; SD vs. SD-MCC; SC
vs. SD and SC vs. SI.

2.53 2.65
3.47 3.60 3.95

1

2

3

4

Zero-effort SD-MCC SD SI SC

Fig. 3. MOS results with 95% confidence intervals for synthesized singing
quality of Zero-effort, SD-MCC, SD, SI and SC.

1) MOS tests: Fig. 3 reports the results of MOS tests. It
shows that zero-effort gives the lowest MOS value with 2.53
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Fig. 4. AB preference results with 95% confidence intervals for singing quality
and naturalness of zero-effort, SD-MCC, SD, SI and SC models; NP stands
for no preference. (a) SC vs. Zero-effort; (b) SD vs. SD-MCC; (c) SC vs.
SD; (d) SC vs. SI.
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Fig. 5. XAB preference results with 95% confidence intervals for synthesized
singing similarity of zero-effort, SD-MCC, SD, SI and SC models; NP stands
for no preference. (a) SC vs. Zero-effort; (b) SD vs. SD-MCC; (c) SC vs.
SD; (d) SC vs. SI.

compared with other models using spectral mapping. It is also
showed that the SI model (3.60) outperforms SD model (3.47),
which suggests that SI model benefits from multi-speaker
training data. We also observe that SC model (3.95) achieves
the best performance in terms of quality.

2) AB preference tests: Fig. 4 presents the results of AB
preference tests with 95% confidence intervals. We first exam-
ine the effect of spectral mapping. It is observed in Fig. 4 (a)
that the proposed SC model (81%) significantly outperforms
zero-effort baseline, which demonstrates the effectiveness of
spectral mapping in terms of improving singing quality and
naturalness. Then we examine the effectiveness of including
singing F0 and AP features for training, as shown in Fig. 4
(b). The SD model (68%) trained with singing F0 and AP
outperforms SD-MCC baseline (18%) significantly, hence SD
model will be used for later comparison.

We further compare speaker-conditioned model SC with
speaker-dependent model SD from Fig. 4 (c). It is observed
that SC model is superior to SD model for singing quality
significantly. This suggests that the SC model benefits from
the training on multi-speaker database that is larger than the
speaker dependent database.

Last, we evaluate the effect of augmenting i-vectors for
spectral mapping training, as shown in Fig. 4 (d). We observe
that SC model outperforms SI model in terms of singing
quality (57% vs. 30%). This indicates the SC model with

i-vectors achieves higher singing quality than the speaker-
independent model (SI model) without i-vectors.

3) XAB preference tests: Fig. 5 presents the results of XAB
preference tests with 95% confidence intervals. The results of
XAB preference tests are consistent with that of AB preference
tests, where SC model is superior over zero-effort baseline
and SD model outperforms SD-MCC model. In Fig. 5 (c), we
observe that speaker-conditioned model SC (52%) achieves
better performance than speaker-dependent model SD (27%)
in terms of preserving user’s speaker identity. Last, we evaluate
the effect of introducing i-vectors in Fig. 5 (d), where SC
model outperforms SI model with preference scores of 48%
vs. 36%. This suggests the SC model with i-vectors can be
beneficial to the preservation of target speakers’ identities.

C. Summary of Evaluation Results

Both objective and subjective evaluations indicate that the
proposed SC model outperforms zero-effort, SD-MCC base-
lines and SI model. This confirms the effectiveness of the
proposed model in terms of both singing quality and speaker
similarity.

Moreover, the proposed SC model achieves better perfor-
mance than speaker-dependent model (SD model) in subjective
evaluations, and obtains comparable results with SD model
in objective evaluations. Although the subjective results of
SD model vs . SC model are not consistent with objective
evaluations, it is understandable since human perception may
not be well consistent with objective scores. Such inconsistent
results were also reported in prior works [15], [17], [41], [42].
Additionally, as the target speaker’s data is not accessible in
many applications, the proposed SC model is more practical
than the target speaker dependent approaches (SD and SD-
MCC models). The synthesized singing samples for different
models can be found in the website 2.

VI. CONCLUSIONS

This paper presented a speaker-conditioned spectral map-
ping model using i-vectors for speaker-independent speech-
to-singing conversion. The proposed approach benefited from
multi-speaker data with their i-vectors to model speaker-
specific differences between speech and singing spectra. Both
objective and subjective results on NUS-48E corpus and NUS-
HLT SLS corpus databases showed that the proposed speaker-
conditioned spectral mapping approach outperforms the zero-
effort and speaker-dependent spectral mapping baselines in
terms of the naturalness, quality and speaker similarity. Exper-
imental results also confirmed the effectiveness of involving
singing F0 and AP, and augmenting i-vectors to adapt target
speaker identities for spectral mapping.
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