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Abstract—Voice activity detection (VAD) is essential for the
speech signal processing system. Convolutional long short-term
memory deep neural network (CLDNN), which consists of a
CNN and an LSTM, has shown excellent improvement in VAD.
However, the training data of the CLDNN must be sequence data
because of the LSTM. To improve data utilization, we proposed
a two-stage training strategy. Specifically, the first stage trains
the CNN on shuffled frame-level data to get high-level feature
expression, individually. The second stage trains the LSTM to
model the speech continuity. We show that our method has
obvious advantages in discriminative ability and generalization
ability than compared approaches in different scale of training
data, especially in small datasets. The proposed method achieves
over 2.89% relative improvement than the original CLDNN on
noise matched condition and over 1.07% on unmatched condition.

I. INTRODUCTION

Voice activity detection (VAD) is an important pre-
processing step of the speech signal processing system,
such as speech enhancement, voice wake-up and speech
recognition. The task of VAD is to detect the speech or
non-speech events in an audio signal, which is pretty simple
for clean speech. However, for noisy speech, especially in
low signal-to-noise ratio (SNR) scenario, VAD is a challenge.
To cope with the challenge, in recent years, most researches
focused on deep learning methods, which take VAD as
a binary-class classification problem and train model on
pre-marked corpora.

Deep neural networks (DNNs) are commonly used in
VAD, e.g. [1, 2]. DNNs are simple and powerful, and are
good at solving classification problems. However, DNNs are
not good at modeling the sequential information. To provide
more context information in the time sequences, Zhang and
Wang [3] proposed to apply multi-resolution cochleagram
feature (MRCG) and boosted deep neural network (bDNN)
to explore contextual information. MRCG concatenates
multiple cochleagram features calculated at different spectral
and temporal resolution. bDNN generates multiple different
predictions from a single DNN by boosting contextual
information. In [4], Zhang and Wang further proposed an
ensemble learning framework named multi-resolution stacking
for VAD, which is a stack of ensemble classifiers.

In computer vision and other fields, convolutional neural
networks (CNNs) have become a popular deep learning
model, which is also effective in VAD [5]. CNNs are good
at modeling local and shift-invariant patterns. The weights
sharing technology makes CNN can build a large model
with few trainable parameters. Some effective methods like
dilating and gating improve the CNNs’ performance further,
and make it more suitable for the temporal sequence modeling
tasks, e.g. VAD [6, 7]. Another popular deep learning model,
recurrent neural networks (RNNs) [8], for example, the
long short-term memory (LSTM), is good at modeling the
temporal dependence in long sequences, such as the speech
signal. However, the LSTM focus more on the underlying
differences of each frame, but the feature expression ability
is its weakness. Therefore, use the high-level feature instead
of the original ones have been proved more efficiently [9],
[10]. In [11], it proved that combining DNN, CNN, LSTM
can take each one’s advantage: CNNs are good at extracting
features, LSTMs are good at processing sequence data, and
DNNs are good at mapping features into a more separable
space. With these observations, Sainath et al. [12] proposed
a hybrid model called convolutional long short-term memory
deep neural networks (CLDNNs), which consist a CNN and
an LSTM, for speech recognition tasks. After that, Zazo et
al. [13] further employed the same model for VAD.

The CLDNN architecture has shown excellent improvement
in VAD problem. CNNs are make up for the lack of feature
expression of LSTM. In CNN, it is beneficial for the layers
to receive various order of data. Shuffle the data provide
improvement in robustness ability for CNN and remain
the model general and overfit less. Sainath et al proposed
ShuffleNode [14], which shuffles feature map elements
to achieve regularization functions during model training.
However, the input of CLDNN must be sequence data because
of the LSTM, while CNN located in the bottom layer of
CLDNN. So, training the whole networks of CLDNN directly
limits the feature expression of CNN.

As a solution, we propose a two-stage training strategy.
At the first stage, the CNN is trained on frame-level data to
get high-level feature expression, individually. At the second
stage, the LSTM receives the high-level feature expression and
trained with sequence data. This two-stage training strategy
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is similar to greedy layer-wise unsupervised training strategy
or layer-by-layer discriminative pretraining in [12, 13]. But
differs in that, training CNN on frame-level data benefit a lot
in feature expression by shuffle training data, which improve
the performance of LSTM, simultaneously.

The rest of this paper constructed as follows. Section 2
reviews the architecture of CLDNN and compared with two-
stage learning architecture. Then the experimental details are
described in section 3. The results and analysis are presented
in section 4. Finally, section 5 concludes the paper.

II. METHODS

A. CLDNN

The architecture of CLDNN is shown in Figure 1(a), where
Xt represents the feature at frame t. The input is denoted as
[X1, ..., Xm], which means the network processing m frames
each time. Thus, the target of this network is the VAD labels
of each frame. CLDNN applies CNN at the bottom to reduce
frequency variance in the inputs, then passes this to LSTM
to perform temporal modeling. Finally, the DNN mapping
features into a more separable space. The input is must be
organized as a temporal sequence because of the LSTM [12],
[13].

B. Two-stage Learning Architecture

CLDNN architecture combine CNN, LSTM and DNN
structure into one unified framework that is trained jointly.
To improve data utilization and get a better feature expression
of CNN, we propose a two-stage training strategy, which is
shown in Figure 1(b). At the first stage, the CNN aims to
get a better feature map which trained on frame-level rather
than sequence data, which is denoted as Xt and to estimate
the corresponding VAD label yt. So we can feed the frame-
level features disorderly. At the second stage, the input is
denoted as [X1, ..., Xm]. The LSTM receives the high-level
features which produced by the pre-trained CNN. The output
of the second stage is [y1, ..., ym], which is corresponding with
the input. The two-stage learning strategy improves the data
utilization, which use the frame-level features at the first stage
and sequence data at the second.

III. EXPERIMENTAL DETAILS

A. Dataset

All experiments are conducted on TIMIT database [17].
We randomly selected 2000 clean utterances from training
set, and use the TIMIT core test set as our test utterances.
The TIMIT core test set contains 192 utterances, 8 from each
of 24 speakers. We concatenate the selected train utterances
with some silence segments of random length, which makes
the ratio of speech frames account for around 60%. Then
mixed with a speech shape noise (SSN) and 4 other types
of noise from the NOISEX-92 dataset [18]: babble noise,
factory noise, destroy engine noise, and destroyer operations
room noise at SNRs of -5 and 0 dB for training. Each noise
is divided into two non-overlapping segments for training
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Fig. 1. Network architecture for voice activity detection.

and testing respectively. To make the sample more generally
and multiply, we intercept noise segments from long noise
randomly. Besides these four types of noise, another four types
of noise are used for noise unmatched test, which includes
an unseen factory noise, buccaneer noise from NOISEX-92
and bus noise, street noise from CHiME-4 dataset [19]. The
testing SNR are -5, 0 dB and an unmatched 5 dB. All signal
is resampled to 16 kHz before mixing. Finally, we conduct
experiments on about 30.81 hours of noisy training data.

B. Features and Labels

To extract the features, we divided the speech signal into
frames using 20 ms hamming window with 10 ms overlap.
For all experiments, we use 40-dimensional log-mel filterbank
energies as features, which exhibit more temporal and spectral
smoothness than MFCC features [20, 21].

The TIMIT corpus includes a time-aligned word
transcription file associated with each utterance, in which the
word boundaries were aligned with the phonetic segments in
time domain. We convert it to the frequency domain labels
which can correspond with features for each frame.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1186



TABLE I
AUC(%) COMPARISON BETWEEN THE CONVENTIONAL APPROACHES AND THE PROPOSED TWO-STAGE LEARNING APPROACHES.

SNR Methods nosie matched nosie unmatched

babble engine factory op ssn bucc factory2 bus street

-5dB

SOHN 63.37 58.74 49.94 62.60 45.98 56.41 69.45 73.02 61.68
CNN 70.52 79.41 74.77 77.99 75.88 68.46 71.22 68.66 76.13

LSTM 69.37 80.05 79.26 82.30 83.61 82.77 72.04 75.59 77.16
CLDNN 80.88 89.85 88.08 88.51 89.82 86.13 74.12 75.69 82.81
Proposed 85.34 92.96 89.83 90.22 91.04 86.15 74.96 78.20 81.88

0dB

SOHN 69.29 68.48 56.35 70.18 49.83 62.76 74.69 78.07 68.34
CNN 78.26 86.84 81.83 83.90 83.37 75.20 77.52 75.34 82.41

LSTM 76.37 86.09 85.51 86.16 87.45 87.50 84.39 82.11 85.87
CLDNN 86.91 93.01 91.97 91.46 92.30 90.56 87.25 83.42 90.40
Proposed 91.82 95.68 94.17 94.37 94.81 91.74 87.08 84.69 91.62

5dB

SOHN 72.63 74.88 62.77 74.29 57.97 70.98 79.58 81.67 74.86
CNN 84.03 89.53 86.64 87.59 87.41 78.77 87.40 82.29 86.37

LSTM 84.83 88.10 87.50 87.97 88.28 88.29 87.97 87.56 87.76
CLDNN 89.79 93.50 93.53 93.37 93.80 92.57 93.27 92.16 92.84
Proposed 94.55 96.48 95.47 95.94 95.92 95.23 95.55 94.22 95.41

C. Comparison Methods

We compare the proposed method with four VAD methods:
a statistical method proposed in [22] by Sohn et al, a pure
CNN, a pure LSTM, and the original CLDNN methods.

Sohn’s method is a state-of-the-art VAD algorithm based
on a statistical model in the time-frequency domain for the
derivation of the Likelihood Ratio Test (LRT).

The CNN has two 1-D convolutional layers with 32 and 64
kernels. The filter size is set to 3. The inputs are frame-level
features. Each frame is surrounded by 2 contextual vectors
to the left and 2 to the right. For the CNN baseline, a fully
connected layer with 64 hidden nodes was connected to the
convolutional layer, then a softmax layer is applied to obtain
the output.

The LSTM baseline has three LSTM layers, where the first
layer contains 128 memory cells, and the second contains 64
memory cells. Finally, the last layer has only one memory cells
to get the output. In the training stage, we limit the length of
sequences input to 100 frames.

The CLDNN baseline combines the above CNN and a
single-layer LSTM which training with sequence data. This
configuration makes the parameters number is comparable
with the LSTM baseline. From the second convolution layer,
we get a 64-dimensional output for each frame. The outputs
are feed into an LSTM layer with 64 cells. After that, a fully
connected layer with 64 hidden units is used to compress the
information to make the feature map is easy to separation.
Finally, the last layer output the probability for each frame.

For the two-stage training, the model is identical to the
CLDNN. In the first stage, we only train the CNN as we
did in the CNN baseline, the inputs of this network is frame-

level features rather than a sequence. Then the output layer is
removed from the CNN and connected to the LSTM. In the
second stage, we only train the LSTM. Its input is the output
from the trained CNN in sequences.

D. Optimization and Evaluation Metrics

All models are trained using adaptive moment estimation
(Adam) optimizer [23] with a mini-batch size of 256. As a
typical classification problem, the loss function is binary cross
entropy, which is given by:

Lvad = −
N∑
t=1

(
Yt log Ŷt + (1− Yt) log(1− Ŷt)

)
(1)

where N is the number of frame, Yt and Ŷt represent the VAD
label and the estimated label of the t-th frame, respectively.

In order to evaluate the performance of the class imbalance
problem like VAD, we use the area under the curve (AUC)
as the evaluation metrics, which is the area under the
receiver operating characteristic (ROC) curve [24]. AUC is
considered as an overall metric of the VAD performance
rather than the detection accuracy [4]. Higher value means
better performance.

IV. RESULTS

First, we conducted all experiments on about 3.07 hours of
training set, which is quite small. Table 1 lists the comparison
between the four baselines approaches and the proposed
method under four seen and four new background noises at
various SNRs. The values of each approach indicate the best
results use the same testing set under the same conditions.
SOHN denotes the method proposed by Sohn. CNN, LSTM,
and CLDNN denote the other comparison methods.
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Fig. 2. ROC curves for the proposed method and baselines.

As can be seen from Table 1, LSTM shows better
performance than CNN in almost all matched and unmatched
conditions. Combining both advantages of CNN and LSTM,
the CLDNN provides over 9.38% and 7.20% relative
improvement than CNN and LSTM under the matched
condition while 11.99% and 6.87% under unmatched
condition, respectively. Comparing with CLDNN baseline,
the proposed architecture achieves over 2.89% relative
improvement on noise matched condition and over 1.07% on
unmatched condition.

Figure 2 shows the ROC curves comparison among each
approach under the matched and unmatched test condition,
where the SNR is 0 dB. False alarm rate denotes the rate of
the non-speech frame which misclassified to speech frame, and
the speech hit rate denotes the rate if the speech frame which
was classified correctly. This figure shows that the two-stage
method achieved a better performance obviously.

A. Comparison among different scale of training data

Table 2 lists the AUC(%) comparison between CLDNN
model and two-stage learning strategy using the small and big

scale of training set. Under the small training set, the proposed
method achieves over 2.89% relative improvement than the
original CLDNN on noise matched condition and over 1.07%
on unmatched condition.

While under the larger training set, both the CLDNN
baseline and the proposed method get improvement on the
matched condition. When the training data increases by more
than 10 times, CLDNN is comparable in performance to the
proposed method in matched condition.

On the unmatched condition, the performance of both
approaches implies that it’s still a challenge for the model to
deal with variable environment, especially the noise is unseen
in the training set.

TABLE II
AUC(%) COMPARISON BETWEEN CLDNN AND THE TWO-STAGE

LEARNING APPROACHES UNDER DIFFERENT SCALE OF TRAINING DATA

Scale Model Matched Unmatched

3.07 hours CLDNN 90.45 87.05
Proposed 93.07 87.98

30.81 hours CLDNN 93.17 87.99
Proposed 94.04 87.99

V. CONCLUSIONS

To cope with the challenge of VAD task in low SNR,
we propose a two-stage learning strategy to the CLDNN
to improve the data utilization. At the first stage, the CNN
is trained on frame-level data to get high-level feature
expression, individually. At the second stage, the LSTM
receives the high-level feature expression and trained with
sequence data. Comparing with conventional methods, the
bottom layers can be trained better and obtain a more
robust feature expression. And the next layers can obtain
a better estimation so that the VAD can be more accurate.
We compared the proposed method with the conventional
CLDNN under various noisy conditions. Experimental results
show that the proposed method has obvious advantages in
discriminative ability and generalization ability. Using the
proposed method, we can obtain an accurate VAD system
trained with very limited training data.
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