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Abstract—Formant tracking is a very important task in speech
applications. Most of the current formant tracking methods
bank on peak picking from linear prediction (LP) spectrum of
speech, which suffers from merged/spurious peaks in LP spectra,
resulting in unreliable formant candidates. In this paper, we
present the significance of phase spectrum of speech in refining
the formant candidates from LP analysis. The short-time phase
spectrum of speech is modeled as phase response of an allpass
(AP) system, where the coefficients of AP system are initialized
with LP coefficients and estimated with an iterative procedure.
This technique refines the initial formants from LP analysis using
phase spectrum of speech through an AP analysis, thereby accom-
plishing fusion of information from magnitude and phase spectra.
The group delay of the resultant AP system exhibits unambiguous
peaks at formants and, delivers reliable formant candidates. The
formant trajectories obtained by selection of formants from these
candidates are reported to be more accurate than those obtained
from LP analysis. The fused information from magnitude and
phase spectra has rendered relative improvements of 25%, 15%
and 18% in tracking accuracy of first, second and third formants,
respectively, over those from magnitude spectrum alone.
Index Terms: Formant tracking, Phase spectrum, Allpass
modeling, Fusion of information.

I. INTRODUCTION

Formants are defined as peaks in the spectrum of speech
sounds [1]. As they are the high energy content in spectrum,
formants are relatively robust to various distortions, and are
used for speech enhancement [2]. Acoustically, formants rep-
resent resonances of the human vocal tract system (VTS) and
there exist direct correspondence between formants and VTS
parameters. This correspondence has been studied for speech
recognition [3], speaker recognition [4], speech analysis [3],
speech synthesis [1], [5]–[7], voice conversion [8], [9], etc.
However, difficulties in obtaining accurate formant trajectories
had limited their use to study of speech sounds and, restricted
the utilization of formant-based features in mainstream speech
processing.

As formants are defined as peaks in speech spectrum, the
most straightforward way to identify formants is peak picking
from short-time magnitude spectra of speech signals. Peak
picking from cepstrally smoothed magnitude spectrum and
linear prediction (LP) spectrum were attempted to identify for-
mants [10]–[12]. However, all formants may not be manifested

as observable peaks in smoothed speech spectrum. Hence,
solving for roots of LP polynomial to compute poles of the
system was employed for identifying formants, that are not
readily observable from the LP spectrum [13]. Later, carefully
designed continuity constraints were employed in a dynamic
programming framework to obtain smooth formant trajecto-
ries [3], [14], [15]. Instead of using the LP spectrum or LP
polynomial directly, several statistical and adaptive method-
ologies including hidden Markov models [16]–[18], mixture
models [19], [20], particle filters [21]–[23] and Kalman filters
[24], [25] were employed for formant tracking. Notice that,
most of these methods rely on magnitude spectral information
in speech signals.

In addition to magnitude spectrum, phase spectrum was
employed in formant tracking by the use of group delay
functions. The computation of group delay of speech is
affected by several sharp and spurious peaks. Smoothing of
group delay function was attempted by conditioning it with
magnitude spectrum, or by constraining the analysis to within
unit circle in z-plane [26], [27]. The LP analysis was also
employed for computation of group delay from LP residual to
represent phase spectrum [28], [29]. These methods essentially
impose a minimum phase assumption on speech signals for
computation of group delay, which is not necessarily a valid
assumption.

Another class of techniques employed for formant tracking
involves segmentation of frequency range of speech signals,
instead of short-time analysis. Parallel resonator models, fil-
terbank analysis, time-varying adaptive filters, etc. were em-
ployed for the frequency segmentation of speech for formant
tracking [30]–[34].

In this paper, we attempt to perform formant tracking in
frequency domain using short-time analysis of speech, with-
out imposing any minimum phase assumption on VTS. We
consider the VTS to be a mixed phase system and utilize the
short-time magnitude and phase spectra of speech, represented
by LP (minimum phase) and AP (allpass) analyses, for formant
tracking. The phase spectrum of speech is modeled as the
phase response of an AP system, where the coefficients of the
AP system (APCs) are iteratively estimated. In this iterative
process, the APCs are initialized with the coefficients of LP
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system obtained from LP analysis of short-time segment of
speech. Thus, the magnitude spectral information embedded in
LP system is used as a starting point to model phase spectrum
into an AP system. The group delay of the resultant AP
system exhibits unambiguous peaks at formants. The smoothed
formant trajectories are obtained by choosing formants from
candidates formed from poles of the AP system function,
using dynamic programming based on continuity constraints.
It is observed that the proposed use of phase spectrum has
delivered enhanced formant tracking performance when com-
pared to methods relying only on magnitude spectrum from
LP analysis.

The rest of the paper is organized as follows: Section II
discusses the AP modeling of phase spectrum of speech and
its usefulness in identifying formants. The formant tracking
methodology using phase spectrum of speech is explained in
Section III. Formant tracking performances of different meth-
ods are evaluated in Section IV. In Section V, we summarize
the contributions of this paper.

II. MODELING PHASE SPECTRUM FOR FORMANT

TRACKING

Speech signal is the output of a time-varying VTS ex-
cited with a time-varying glottal excitation. As formants are
manifestation of resonances of the VTS, efficient source-
system separation from speech signals can provide ways to
compute formants. For source-system separation, speech can
be analyzed using short-time Fourier transform. The Fourier
transform of a short-time segment of discrete-time speech
signal, s[n] is given by,

S(jω) =

N−1∑

n=0

s[n]e−jωn = |S(jω)|ej∠S(jω) (1)

where, |S(jω)| and ∠S(jω) are the magnitude and phase
spectrum, respectively. A segment of voiced speech is shown
in Fig. 1(a) and corresponding magnitude and phase spectra
are given in Fig. 2(a) and Fig. 2(b), respectively. In general,
the phase and magnitude spectra are required to completely
characterize S(jω).

LP analysis is a prominent method for characterizing the
magnitude spectral envelope, as it models the VTS as an
autoregressive and all-pole model [11]. The error incurred in
LP analysis, termed as LP residual, represents the excitation
signal. The LP analysis essentially performs source-system
separation from speech signals. The magnitude responses of
LP systems for two model orders are shown in Fig. 2(c) and
Fig. 2(e) and, the LP residual is shown in Fig. 1(b). The peaks
in the LP magnitude response can be deduced as short-time
formants, and significant peaks in LP residual indicate the
glottal closure instants [35].

Though magnitude spectrum is widely used in speech ap-
plications, the phase spectrum is usually ignored. In this work,
we present the effectiveness of phase spectrum in identification
of formants. A procedure to model the phase spectrum of
speech signals was proposed in [36]. The magnitude spectrum
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Fig. 1. Signals involved in LP and AP analyses: (a) A segment of voiced
speech, (b) LP residual from 12th order LP analysis and (c) AP residual
from 14th order AP analysis.

of speech is deemphasized to highlight the phase spectral
characteristics, and are modeled into an AP system response.
The steps involved in AP modeling of phase spectrum are [36]:
1) A signal is generated from speech signal by removing the
magnitude spectrum and preserving the phase spectrum as,

y[n] = F−1

{
S(jω)

|S(jω)|

}
(2)

where F−1 is the inverse Fourier transform. This signal,
termed as phase signal y[n] has uncorrelated, but not inde-
pendent samples.
2) The phase signal is considered as the output of an allpass
system, excited with independent and identically distributed
(i.i.d) non-Gaussian input sequence, x[n].
3) The sequence x[n] is considered as a representative of
glottal excitation. For voiced speech, significant excitation
happens only at glottal closure instants and hence, the x[n]
has its energy, e[n] = x2[n], concentrated to a few number of
samples.
4) The AP system has its poles and zeros located at conjugate
reciprocal locations. Hence, the numerator and denominator
of the AP system function are characterized by the same set
of coefficients w = [w1w2...wM ]T .
5) Estimate the APCs of an M th order AP system, w,
by minimizing the entropy of energy of x[n], J(w) =
−∑N

n=1 e[n] log e[n]. The APCs can be estimated as:

ŵ = argmin
w

J(w) (3)

The algorithm for estimation of APCs w, by minimizing J(w)
using gradient descent optimization is given in Algorithm. 1.

A. Significance of phase spectrum

The LP analysis models the VTS as a minimum phase all-
pole system and characterizes the magnitude spectral envelope
of speech sigals. Hence, it fails to represent the zeros of
the system function of VTS. Also, the unmodeled phase
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Fig. 2. Illustration of frequency responses of LP and AP analyses.
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Algorithm 1 AP modeling using gradient descent algorithm
[36].

1: Initialize w0 ← rand(M, 1) and l ← 1
2: while J(ŵl−1) − J(ŵl) > ε, where ε is chosen as 10−6

do
3: Compute gradient as

∇J(w) =
∂J(w)

∂e[n]

∂e[n]

∂x[n]
∇x[n]

= −
N∑

n=1

(1 + log e[n]) (2x[n])∇x[n]

where

∇x[n] = −
M∑

k=1

wk∇x[n+k]−x[n+1]+y[n+M−1]

and

x[n+ 1] = [x[n+ 1] x[n+ 2] .... x[n+M ]]T ,

y[n+M − 1] = [y[n+M − 1] y[n+M − 2] .... y[n]]T

∇ = [ ∂
∂w1

∂
∂w2

· · · ∂
∂wM

]T .
4: Update as ŵl = ŵl−1−η∇J(w)

∣∣
w=ŵl−1

, where step-
size is chosen as η = 0.005

5: l ← l + 1
6: end while

spectrum gets reflected in the LP residual, forming multiple
spurious peaks around glottal closure instants and preventing
the residual signal from being a true representative of the
excitation (See Fig. 1(b)). In addition, the LP magnitude
response tends to exhibit single peak corresponding to two
closely spaced peaks in the original spectrum (marked as
p1 in Fig. 2(c)), and multiple peaks corresponding to single
high bandwidth spectral peaks (marked as p2 in Fig. 2(e)).
These scenarios are referred to as merged and spurious peaks
scenarios. Thus unique identification of formants from LP
analysis is not straightforward as the source-system separation
is not fully accomplished.

A possible solution is to capture the unmodeled phase
spectrum from LP analysis to estimate a better representation
of VTS and excitation signal. The mixed phase VTS can be
effectively represented in terms of its minimum phase and
allpass components using LP and AP modelings. The group
delay response of AP system and the AP residual obtained by
modeling the phase spectrum of speech signal in Fig. 1(a) are
shown in Fig. 2(f) and Fig. 1(c), respectively. The AP residual
exhibits single peak at each glottal closure instant, thereby
representing the excitation signal unambiguously. When the
model order is chosen appropriately, the group delay response
of AP system exhibits explicit distinguishable peaks at for-
mants. Notice that, the group delay of LP system also exhibits
sharper peaks than LP magnitude response. However, this
group delay is affected by spurious/merged peaks scenarios
as they are dictated by the poles of the LP system.
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Fig. 3. Groupdelaygram and Spectrogram of speech signal.

To further illustrate the effectiveness of AP modeling, we
plot the groupdelaygram from AP systems estimated from
overlapping short-time segments of speech signal (See Fig. 3).
The formant tracks are well preserved in the groupdelaygram
as in the speech spectrogram, indicating the potential use of
AP systems modeling phase spectrum of speech in formant
tracking.

The AP analysis, together with LP analysis, can be utilized
to deliver a near-complete source-system separation from
speech signals. Formant tracking using the AP system makes
use of magnitude and phase spectra of speech, instead of
magnitude spectrum alone in LP analysis.

III. FORMANT TRACKING USING PHASE SPECTRUM

In order to use the information in magnitude and phase
spectra for formant tracking, we perform LP and AP analyses
in succession and use the poles of AP system to identify short-
time formant candidates. The LP analysis is performed to ob-
tain coefficients of the LP system (LPCs). Later AP analysis is
conducted, in which we propose to initialize the APCs in Step
1 of Algorithm 1 with the LPCs. Thus the initial information
about formants embedded in LP system is made use of in
AP estimation, which got refined to new formant information
in the AP system. Root solving of denominator polynomial of
the AP system provides frequencies and bandwidths associated
with the poles, which form new short-time formant candidates
that are more reliable than those obtained from LP system
alone.

This strategy, which we call LP+AP analysis, delivers M/2
formant candidates at the maximum for model order M . Three
formant values have to be chosen from the candidates, forming
trajectories for first three formants, namely, F1, F2 and F3.
This is accomplished using a dynamic programming (DP)
algorithm developed in [15], in-line with [14]. The DP utilizes
complex poles of AP system (real roots are neglected) to
compute the frequency fi and bandwidth bi of the formant
candidates. As the first 3 formants are to be tracked, certain
parameters associated with them have to be initialized as:
(1) boundary conditions: 100 < F1 < 1500, 500 < F2 <
3500, 1000 < F3 < 4500 and (2) the neutral values of VTS
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TABLE I
FORMANT TRACKING PERFORMANCE IN TERMS OF MEAN ABSOLUTE DEVIATION (IN %) OF ESTIMATED FORMANTS FROM THEIR REFERENCE VALUES.

Classes LP AP LP+AP
F1 F2 F3 F1 F2 F3 F1 F2 F3

Vowels 17.26 10.92 8.97 24.78 14.27 17.13 14.49 9.36 8.68
Semi-vowels 44.41 44.48 36.29 34.11 29.46 27.49 31.74 27.12 26.16

Nasals 44.55 32.76 17.91 25.92 20.37 10.35 20.71 18.90 10.37
Average 35.41 29.39 20.05 28.27 21.37 18.32 22.31 18.46 15.07

for first 3 formants: Fn1 = 500, Fn2 = 1500, Fn3 = 2500
[15], [24]. The cost function for the DP is formulated for each
node of formants, d and each frame of speech indexed by p
as [15]:

C(p, d) = Cl(p, d)+min
m

{Ct((p, d), (p−1,m))+C(p−1,m)}
(4)

where nodes of formants are formed by the (M/2)C3 combi-
nations of formant candidates at each frame index p. The local
and translational costs involved in Equation (4) are defined as
[15]:

Cl(p, d) =
∑

j

αjb
2
j + βj

|fj − Fnj |
Fnj

, (5a)

Ct((p, d), (p− 1,m)) =
∑

j

γj(fj(p)− fj(p− 1))2. (5b)

∀j = 1, 2, 3 and m represents the node with the lowest cost in
the preceding frame indexed as p− 1. The constants α, β and
γ, control the relative weighting of different cost functions for
different formants, whose values are carefully decided.

The DP searches for the lowest cost path, minimizing the
cost function C(p, d), and provides the estimates of F1, F2

and F3 for each frame of speech. The search is carried out
on vowel-like regions and nasal regions separately [15]. In
order to avoid ambiguities or discontinuities caused by outliers
or missing formant points, a moving average smoothing is
performed. Thus smooth formant tracks for F1, F2 and F3

are obtained. The speech spectrogram and estimated formant
tracks from various analyses are shown in Fig. 4. The LP+AP
analysis (APCs initialized with LPCs) provided reliable for-
mant tracks in comparison to those obtained from individual
LP and AP analysis (APCs with random initialization).

IV. EXPERIMENTAL EVALUATION

To evaluate the formant tracking performance of various
strategies, we use the VTR-Formants database [37]. This
database consists of speech signals, together with manually
marked formant values. The dataset chosen for evaluation
consists of 500 utterances from 8 female and 16 male speakers.
The utterances have an average duration of 4 seconds, and are
sampled at 8 kHz. The utterances are segmented into frames
of 25 ms duration, with a time shift of 10 ms. The frames are
selected from voiced speech using an energy-based voicing
decision. The LP, AP and LP+AP analyses are performed on
these short-time frames. The order M for all the analyses is
fixed as 14 [38].
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Fig. 4. Formant tracks obtained (a) LP, (b) AP and (c) LP+AP analyses
(depicted by solid lines). Dotted lines represent reference values of formants
from VTR-Formants database.

In the evaluation of formant tracking performance, we have
excluded obstruent speech sounds, as formants are mostly
meaningful in sonorant speech [15]. The evaluation of formant
tracking is carried out on 3 classes of speech sounds separately,
as, vowels, semivowels and nasals. The evaluation results,
in terms of mean of absolute values of deviations of the
estimated formants from the respective manually marked refer-
ence values in VTR database, are given in Table. I. The fusion
of information from magnitude and phase spectra of speech
has proven advantageous in formant tracking. The proposed
LP+AP modeling strategy outperforms formant tracking by
either LP or AP modeling alone, in all speech classes.

The AP modeling outperforms LP analysis in formant
tracking from nasals and diphthongs. The formant tracks from
LP analysis largely deviates from their reference values for
sounds /n/, /m/ and /ng/, as illustrated in Figure 4(a). For the
sound /ey/ shown in Figure 4(a), the LP analysis places 2
peaks corresponding to the first formant with wider bandwidth,
causing a large error in the estimated second formant. On
the other hand, LP analysis outperforms AP modeling in
formant tracking from vowels. This can be observed from
Figure 4(a) and Figure 4(b) for sounds /iy/ and /ix/. Also the
AP modeling performance suffers in closure phase of stop
sounds. The LP+AP strategy nullifies the drawbacks of both
AP and LP analyses and consistently delivers best performance
for all classes of speech sounds. The LP+AP strategy had
provided relative improvements of 25%, 15% and 18% in
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average formant tracking performance for the first 3 formants
respectively, with respect to the LP-based method.

V. CONCLUSIONS

We proposed a strategy to improve the formant tracking
performance by LP analysis, using phase spectrum of speech
signals. The short-time phase spectrum of speech was modeled
as the response of an AP system, and the initial values
of AP coefficients in an iterative AP modeling algorithm
were substituted with the LP coefficients. Thus the fusion of
information from magnitude spectrum (captured in LPCs) and
phase spectrum (captured in APCs) was accomplished. The
formant tracking was performed using a DP, which selected the
short-time estimates of formants from the candidates obtained
by root solving of AP polynomial. The DP also imposed con-
tinuity constraints on short-time formant estimates to acquire
smooth formant tracks. The formant tracks thus obtained from
the proposed LP+AP modeling strategy outperformed those
obtained from either LP or AP modeling alone, demonstrating
the superiority of fusion of information from magnitude and
phase spectra.
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