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Abstract—This paper proposes a new scheme to execute the
task of speech enhancement (SE) for recognition based on multi-
objective learning method which uses three objectives in the
gated recurrent unit (GRU) network training procedure. The
first objective is the main target for the expected SE task by
directly mapping the noisy log-power spectrum (LPS) features
to clean Mel-frequency cepstral coefficients (MFCC) features.
The second one is an auxiliary target to help improving the
main one by learning additional information from the back-
end acoustic model (AM). The third one is also an auxiliary
target achieved by learning some information from mapping
noisy LPS to clean LPS. The two auxiliary structures could help
the original structure to optimize the network parameters by
correcting the errors. This approach imposes more constraints
on direct feature mapping and information passing from the
acoustic model to the network, enabling the enhanced network
to better serve the AM. The experimental results show that the
new multi-objective scheme with joint feature mapping and the
posterior probability learning method improves the performance
of SE. And this scheme significantly lowers the Character Error
Rate (CER) of the AM compared to the baseline deep neural
network (DNN) network '.

I. INTRODUCTION

Speech enhancement is a challenging and important re-
search area for speech signal processing applications such as
speech communication and speech recognition, whose perfor-
mance largely depends on the signal quality [1].Traditional
speech enhancement methods such as spectral subtraction
[2], Wiener filtering [3], amplitude estimation [4] are widely
popular due to their low complexity in computation and
perform very well in processing stationary noise, but not in
unknown non-stationary noise. With recent development of
deep learning-based speech processing [5], supervised deep
learning approaches have been shown to generate enhanced
speech with good qualities [6] based on a mass of known
data.Also, DNN with multi-objective learning [7] performs
better in predicting LPS characteristics and improving speech
quality in SE, and can achieve promising results in challenging
real-world speech applications like speech enhancement for
speech recognition. But in this study, the focus is on improving
speech recognition accuracy. And that DNN is not the only
way to improve the accuracy of speech recognition, the gated
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recurrent unit (GRU) is more suitable for sequence modeling
tasks [8].

In this paper, a multi-objective learning method with three
targets is proposed to optimize a joint objective function in
the task of SE for speech recognition. The objective function
includes not only the error of the primary MFCC features, but
also the secondary target errors of the posterior probability
obtained from the AM and the third target errors of the clean
features, such as LPS. The posterior probability uses cross
entropy (CE) as the optimization function, while the features
use mean square error (MSE) as the optimization function. In
the main task, we map the LPS features to the MFCC features.
In the auxiliary tasks, information from the acoustic model and
the clean LPS features is used to fix the main target to make it
better fulfill the requirements of the back-end acoustic model.
The proposed method transforms a simple regression task into
two tasks, i.e. classification and regression tasks.

The experimental results imply that the multi-objective
learning method significantly lowers the CER as compared
with the DNN feature mapping baseline when tested on the
AM.

II. MULTI-OBJECTIVE LEARNING SPEECH ENHANCEMENT
WITH GRU NETWORK

In [9], recurrent neural network (RNN) is adopted as a
mapping function to predict the clean MFCC features from
the noisy LPS features. The relationship between the clean and
noisy speech features can be well learned because nearly no-
assumptions were imposed during the training process. Since
the training algorithm uses gradient-based back-propagation
through time (BPTT) in the cassical RNN. When the time
is long, the residual index that needs to be returned will
drop, leading to slow update of the network weight. To solve
this problem, long short-term memory (LSTM) [10] network
and GRU network have been introduced. GRU parameters
are fewer than LSTM and therefore easier to converge while
LSTM shows better performance with a large number of data
sets. Since small data are used in the experiment, the GRU
network structure is adopted to simplify the calculation.

MSE and CE are used to update the weights in the Shared
GRU network,
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Fig. 1. Three different structures of speech enhancement for recognition. (a) Simple feature mapping enhancement, (b) multi-objective learning simultaneous
output enhancement and (c) multi-objective learning similar to End-to-End structure.
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MSE is the mean of the sum of the squares of the corre-
sponding predicted data and original data points. In speech
enhancement, the MSE between the target features and the
predicted features is always used as the objective function. y;
is the clean MFCC feature, y; is the predicted MFCC feature,
N is the total number of data, and w = 0.5. It can be seen that
the closer the MSE is to zero, the better the model selection
and fitting, as well as the data prediction will be.

M
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CE is mainly used to measure the difference between two
probability distributions. The loss function calculates the cross
entropy of the prior information of the training data and the
posterior information of the target data to eliminate noise
interference. z; is the posterior probability of the clean data
through AM, p; is the probability of the predicted data, and
M is the number of categories.

Multi-objective learning is proposed to jointly predict the
primary MFCC features together with the posterior probability
obtained by the AM and other continuous features, such as
LPS, to enhance learning as follows,
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FE represents the new target optimization function, which is
composed of the MSE calculated by two different features and
CE calculated by the posterior probability. g; is the clean LPS
features; ¢; is the predicted LPS features. In addition, o >
B8 > >0, a [ and  are the coefficients of the objective
functions in the overall optimization function, respectively,
used to control the proportion of each target.

Fig.1 presents the structure of the proposed multi-objective
learning based on the simple feature mapping, which is added
posterior probability and other features during training. Com-
pared with the former two structures in Fig.1, the output of
the posterior probability task is added with the GRU network
similar to the End-to-End structure [11], [12]. The method
of predicting the posterior probability can promote the clean
MFCC. And assisted feature learning can also complement
the use of shared GRU in feature information. The output of
the shared GRU changes the feature size of the output through
the fully connected layer. Overall, multi-objective learning can
improve the generalization ability of feature estimation and the
matching degree of the acoustic model.

A. Feature Mapping based speech enhancement

MEFCC is one of the most popular speech features used in
speech recognition [13] and speaker recognition [14]. In the
front-end enhancement module, the output of the enhancement
module usually chooses the MFCC feature because of the input
requirements of the acoustic model. The front-end network
structure mainly uses the skip connection [15]. Which is
implemented on the basis of full connection and can increase
the input of each layer and the generalization ability, as is
shown in Fig. 2.

B. Automatic Speech Recognition

Recently, DNN-LSTM structure has been widely used in
speech recognition as acoustic models [16] and shown to be
able to preserve long-term temporal information in various
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Fig. 2. Two different network connections.

tasks [17]. In this case, the follow-up experiment will use
this acoustic model as the experimental acoustic model. A
trigram language model (LM), which was trained with more
than 100,000 words in the vocabulary, was used for decoding
in the experiments. In order to ensure the normal recognition
rate and obtain the required posterior probability, this study
adopts XiaoMi TV recognition model as the acoustic model,
whose CER is 10.79% in the Kaldi open aishell-1 test set.

C. Multi-objective Learning

The front-end enhancement network only learns the cor-
relation between the feature mapping information and is not
associated with the acoustic model. Multi-objective learning
can unite both the feature mapping and acoustic model without
considering the joint learning of reinforcement and recognition
models.

The posterior probability is the probability of correction
after obtaining the information about the future results. Which
can be determined by all the data about the natural state. Since
it makes full use of the prior knowledge and the observed
historical time variable information, it is a more reasonable
state decision method. Both operations that map noisy LPS
features to clean MFCC features and clean LPS features, as
well as the posterior probability are jointly predicted, so that
some information is removed compared to the independent
prediction. In order to retain as much information as possible,
we also selected the LPS feature to be trained.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this work we conducted on waveforms with 16kHz
sampling rate. The training and the test data are pre-processed
by adding noise after reverberation, with the reverb data
coming from Povey’s paper [18]. The reverb contains real
and simulation reverb, and the simulation reverb have three
types: small, medium and large room. The impulse response
reverberation time 60 (RT60) in the room is less than 500
ms. Among 110 noises, 100 noises were used in [19] (The
noise types include traffic, machine, home, and bell, etc.) and
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Reverberation .
Network Small | Medium | Large | Real Noise
Clean 11.07
None 30.03 3345 43.67 | 21.58 | 18.52
DNN 18.87 22.69 3143 | 1696 | 14.77
GRU 16.54 19.23 25.19 | 13.24 | 13.26
DNN | 17.11 | 1985 | 27.66 | 1438 | 13.45
GRU 15.68 18.47 2432 | 12.67 | 12.78

TABLE 1

CERS (%) OF FOUR DIFFERENT NETWORKS IN DIFFERENT
ENVIRONMENTS. DNN REPRESENTS A NETWORK WITH FULLY
CONNECTION, AND DNN REPRESENTS A NETWORK WITH SKIP

CONNECTION. GRU AND GRU ARE THE SAME.

10 noises were used in [20] (The noise types include pink,
white, street and other noises). We randomly extracted 3000
real room impulse response (RIR) and 100 noises to be added
to the training set and the test set named Siml. The signal
noise ratio (SNR) was randomly generated between 10 and
30 dB. In order to compare the effects of different test sets
more intuitively, we extracted the other 1000 real RIR and the
rest 10 noises were added to the test sets just like sim1 which
is named §im?2-

The training set used one hundred thousand short command
statements data from the Xiaomi TV Data0O1 (about 100hrs).
The network built on Tensorflow consisted of a single-layer
fully-connected output layer and four shared GRU layers with
1024 nodes on each GRU layer. The training of acoustic
models and the extraction of feature data are all based on
Kaldi implementations. As for feature extraction, the frame
length was set to 25 ms with a frame shift of 10 ms.

A. LPS mapping to MFCC

In Table I, we compared the character error rates of the fully
connection network and the skip connection network. As well
as the DNN baseline and GRU network. Reverberation and
noise are added to the test set respectively rather than mixed
together. The results show that the skip connection network has
improved the enhancement effect and GRU network performs
better than DNN. So both GRU and the skip connection
networks are used in the subsequent experiments.

B. Joint Prediction of Posterior Probability and LPS

1) The Multi-objective Learning Structure: On the basis
of the experimental LPS mapping to the MFCC, we added
the posterior probability and the LPS feature branch to the
output section as shown in Fig.1. The difference between these
two structures is that the output of the GRU is added with
a fully-connected layer to change the feature dimension of
the output. The output features are compared to the posterior
probability of clean speech and the LPS feature of clean
speech. During the training process, the information at the
moment before output was propagated back to the shared
GRU layer to update the GRU layer. In the decoding process,
only the MFCC feature was selected as the network output.
Finally, the enhanced MFCC features were fed into the back-
end acoustic model.
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Method _Test
sim1 sim2
Clean 11.07 | 11.07
None 27.83 | 26.69
FM(DNN) 20.13 | 22.86
FM(GRU) 19.34 | 20.56
MOL 17.81 18.84
MOL + ETE | 17.75 | 18.80

TABLE 11

CERS (%) COMPARISONS BY PREVIOUS MAPPING BASED NETWORK,
MULTI-OBJECTIVE LEARNING NETWORK AND THE END-TO-END
NETWORK. FM(DNN) MEANS WE USE LPS MAPPING TO THE MFCC
WITH DNN. FM(GRU) MEANS WE USE LPS MAPPING TO THE MFCC
WITH GRU. MOL MEANS THE MULTI-OBJECTIVE LEARNING STRUCTURE.
MOL + ETE MEANS THE END-TO-END MULTI-OBJECTIVE LEARNING
STRUCTURE.

2) The End-to-End Multi-objective Structure: In order to
better compare the performance of feature mapping and multi-
objective learning, we added another structure: adding several
GRU layers between the fully connected layer and the Shared
GRU layer, and then training them as a whole. This structure
is called an End-to-End multi-objective learning structure.
Compared to the previous multi-target structure, the GRU layer
is added to ensure that the features are output at the same level,
and the posterior probability is finally output. The effect of
adding a layer is similar to that of an acoustic model. The
newly added network layer and the shared layer are combined
to form an end-to-end multi-objective structural system. The
dimension of the posterior probability of the new structure
output is constrained, to make the probability dimension of
the output of the two multi-objective structures be the same.

C. Overall Performance Comparison

Table II shows a comparison of the four different network
structures in two different test sets. Compared with the noise
speech results, the recognition rate of the benchmark enhanced
network has increased by ten percentage points. Compared
with the benchmark feature mapping network, the network
recognition rate using multi-objective learning has increased
by nearly two percentage points, and the CER has dropped
to 17.75% on the simulated test set. The loss of training is
shown in Fig. 3.

The experimental results show that the multi-objective learn-
ing method can significantly improve the recognition rate. At
the same time, the End-to-End multi-objective network has the
best performance in the four networks. From the results show
in Table II, although the test set in the training set is better
than the out-of-set test set. However, the out-of-set test set
CER has also been improved, indicating that this scheme has
better generalization ability.

IV. CONCLUSION

In this paper, multi-objective learning is proposed to im-
prove GRU training for speech enhancement in recognition.
With the posterior probability of acoustic model and the LPS
features added to the objective function, this method can better
estimate the clean MFCC. The posterior probability carries
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Fig. 3. The loss of different networks

more information from the back-end acoustic model, and LPS
complements the independent prediction characteristics that
are lacking in joint prediction. With the above findings, this
scheme significantly lowers the CER of the AM compared
to the baseline DNN network. In the future, we will further
explore whether other identifying information can be added to
the proposed scheme.

V. ACKNOWLEDGEMENT

The authors would like to thank the Xiaomi Speech team.
We also thank Haitong Zhang, Juan Zhao, Yunchao He and
Jian Li for their helpful comments and everyone who made
Kaldi and tensorflow. This work is partly supported by Natural
Science Foundation in China (No. 61571044, No. 11590772,
and No0.61473041).

REFERENCES

[1]1 P. C. Loizou, Speech enhancement: theory and practice.
2007.

[2] S. K. Nemala, K. Patil, and M. Elhilali, “A multistream feature frame-
work based on bandpass modulation filtering for robust speech recogni-
tion,” IEEE Transactions on Audio, Speech and Language Processing,
vol. 21, no. 2, pp. 416-426, 2013.

[3] S. Ganapathy, S. H. Mallidi, and H. Hermansky, “Robust feature extrac-
tion using modulation filtering of autoregressive models,” IEEE/ACM
Transactions on Audio, Speech and Language Processing (TASLP),
vol. 22, no. 8, pp. 1285-1295, 2014.

[4] B. Li, Y. Tsao, and K. C. Sim, “An investigation of spectral restoration
algorithms for deep neural networks based noise robust speech recogni-
tion.” in Interspeech, 2013, pp. 3002-3006.

[5] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82-97, 2012.

[6] N. Mohammadiha, P. Smaragdis, and A. Leijon, “Supervised and unsu-
pervised speech enhancement using nonnegative matrix factorization,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 21,
no. 10, pp. 2140-2151, 2013.

[71 Y. Xu, J. Du, Z. Huang, L.-R. Dai, and C.-H. Lee, “Multi-objective
learning and mask-based post-processing for deep neural network based
speech enhancement,” arXiv preprint arXiv:1703.07172, 2017.

[8] K. Irie, Z. Tuske, T. Alkhouli, R. Schluter, and H. Ney, “Lstm, gru,
highway and a bit of attention: an empirical overview for language
modeling in speech recognition,” RWTH Aachen University Aachen
Germany, Tech. Rep., 2016.

CRC press,

184



Proceedings of APSIPA Annual Summit and Conference 2019

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference on. IEEE, 2013,
pp. 6645-6649.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

R. Caruna, “Multitask learning: A knowledge-based source of inductive
bias,” in Machine Learning: Proceedings of the Tenth International
Conference, 1993, pp. 41-48.

M. L. Seltzer and J. Droppo, “Multi-task learning in deep neural
networks for improved phoneme recognition,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 6965-6969.

R. Vergin, D. O’shaughnessy, and A. Farhat, “Generalized mel fre-
quency cepstral coefficients for large-vocabulary speaker-independent
continuous-speech recognition,” IEEE Transactions on speech and audio
processing, vol. 7, no. 5, pp. 525-532, 1999.

K. S. R. Murty and B. Yegnanarayana, “Combining evidence from
residual phase and mfcc features for speaker recognition,” /IEEE signal
processing letters, vol. 13, no. 1, pp. 52-55, 2006.

S. Pascual, A. Bonafonte, and J. Serra, “Segan: Speech enhancement
generative adversarial network,” arXiv preprint arXiv:1703.09452, 2017.
F. A. Gers and E. Schmidhuber, “Lstm recurrent networks learn simple
context-free and context-sensitive languages,” IEEE Transactions on
Neural Networks, vol. 12, no. 6, pp. 1333-1340, 2001.

G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neuralhv networks for large-vocabulary speech recogni-
tion,” IEEE Transactions on audio, speech, and language processing,
vol. 20, no. 1, pp. 3042, 2012.

T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur, “A
study on data augmentation of reverberant speech for robust speech
recognition,” in Acoustics, Speech and Signal Processing (ICASSP),
2017 IEEE International Conference on. IEEE, 2017, pp. 5220-5224.
Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A regression approach to speech
enhancement based on deep neural networks,” IEEE/ACM Transactions
on Audio, Speech and Language Processing (TASLP), vol. 23, no. 1, pp.
7-19, 2015.

A. Varga, “The noisex-92 study on the effect of additive noise on
automatic speech recognition,” ical Report, DRA Speech Research Unit,
1992.

185

18-21 November 2019, Lanzhou, China





