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Abstract—Over the last decade, several studies have investigated 
speech attribute detection (SAD) for improving computer 
assisted pronunciation training (CAPT) systems. The predefined 
speech attribute categories either is IPA or language dependent 
categories, which is difficult to handle multiple languages 
mispronunciation detection. In this paper, we propose a fine-
grained speech attribute (FSA) modeling method, which defines 
types of Chinese speech attribute by combining Chinese 
phonetics with the international phonetic alphabet (IPA). To 
verify FSA, a large scale Chinese corpus was used to train Time-
delay neural networks (TDNN) based on speech attribute models, 
and tested on Russian learner data set. Experimental results 
showed that all FSA’s accuracy on Chinese test set is about 95% 
on average, and the diagnosis accuracy of the FSA-based 
mispronunciation detection achieved a 2.2% improvement 
compared to that of segment-based baseline system. Besides, as 
the FSA is theoretically capable of modeling language-universal 
speech attributes, we also tested the trained FSA-based method 
on native English corpus, which achieved about 50% accuracy 
rate. 

I. INTRODUCTION 

The computer-aided pronunciation training (CAPT) system 
based on automatic speech attribute transcription (ASAT)[1], 
unlike traditional GOP-based CAPT system, takes speech 
attribute detection (SAD) as a front-end task to integrating 
phonetic knowledge (e.g., voicing and aspiration). Then, the 
SAD is used to improve two key functions in a CAPT system, 
namely detecting mispronunciation and providing feedback 
information [2-3]. In [4], the ASAT-based CAPT system 
obtained higher diagnostic accuracy of mispronunciation 
detection than the traditional phoneme-based GOP[5] method 
on automatic speech recognition (ASR). Furthermore, 
mispronunciation  detection at a sub-segmental level, such as 
manner and place of articulation, can more accurately specify 
systematic pronunciation errors of second language (L2) [6]. 
However, most existing CAPT systems are often phoneme-
based and SAD-based method are rarely used. Two of the 
most important reasons is lacking of large-scale training 
resources with qualified annotations, and how to accurately 
handle different language backgrounds SAD.  

Several researches have explored the above-mentioned 
issue. [7] used additional L2 data set as a training set, which 
improve the robustness of SAD. As L2 pronunciation is easily 

affected by learners’ native language, [8] proposed a SAD 
method which adaptively model speech attribute of L2 
speakers by using their native language. For this method, the 
ASAT have demonstrated a potential of utilizing results from 
multi-language SAD as a bank of universal detectors [9]. This 
inference has been verified in multiple tasks[10-11]. In fact, a 
SAD system modeling all learners’ native languages is 
difficult to implement. It is interesting to note that because 
each language has own unique dependencies between speech 
attributes, the language-discrimination of SAD will be more 
obvious when more precisely integrated attributes [12]. 
Therefore, we propose a fine-grained speech attribute (FSA) 
modeling method. Speech attributes have different modalities, 
e.g., the manner of articulation has discrete values while the 
position of the tongue has continuous values. By accurately 
describing values of Chinese speech attribute, the FSA 
method is more suitable for Chinese pronunciation habits.  

In this paper, the FSA method defines seven types of 
speech attribute by referring to the definition of Chinese 
phonetics and mapping the Chinese phonemes to the 
international phonetic alphabet (IPA). In addition, the FSA 
method discretize the continuous values of Chinese final 
attribute into different dimensions, in which 5-dimensional 
and 7-dimensional values are respectively adopted to 
represent the tongue position (as shown in Table 2). Then, 
based on the ASAT paradigm, a bank of speech detectors is 
first built using ASR techniques to get information about the 
presence of speech attributes in 300 hours of Chinese corpus. 
In order to prevent the detectors from learning dependencies 
between different speech attributes, we modeled seven types 
of speech attribute separately.  

 As far as the SAD-based method, most of prior works 
focused on multi-language large vocabulary continuous 
speech recognition (LVCSR) [13-14] and low-Resource 
Speech Recognition [15]. In this work, we compared context-
dependent and context-independent attribute based methods to 
observe the language-dependence of SAD. Moreover, we 
used MFCC and i-Vector [16] features to jointly model SAD-
based Time-Delay Neural Networks (TDNN), then the model 
performance was then evaluated on Chinese and English 
corpus by the frame level recognition accuracy. Finally, we 
compared the diagnostic accuracy based on FSA method with 
the segment-based method on the Russian L2 learner data-set. 
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II. DEFINITION OF FINE-GRAINED SPEECH ATTRIBUTES 

The attributes of speech include a set of fundamental speech 
sounds and their linguistic interpretation, a speaker profile 
encompassing gender, accent, etc [17]. In this paper, Chinese 
consonant sounds are described with four types of knowledge 
sources: place of articulation (PA),  manner of articulation 
(MA), aspiration (AS) and voicing (VO). Chinese vowels 
include five attributes: tongue front-end (TF), tongue height 
(TH), rounding (RO), AS and VO. It is remarkable that 
speech attributes of consonants and vowels have been defined 
differently in acoustic phonetics[18], so we modeled the 
speech attributes of the vowels and consonants separately and 
tried to merge them in the PA classification. Since all Chinese 
vowels have no subcategories in the AS and VO, they are 
shown in the first part. 

A. Definition of consonant speech attributes 

We mapped all Chinese consonants with IPA one by one, 
and found the classification information we needed based on 
the phonetic knowledge of the corresponding phonemes on 
the IPA. In the MA, all vowel parts will be given the label 
"vowels", and four attributes were derived from the phone 
transcriptions using mapping tables (Table1 [19]). Chinese 
consonants represented by Pinyin are presented firstly 
followed by the English consonants given by Timit phoneme 
labels. The table also lists the attributes that exist in English 
but do not exist in Chinese, which are not modeled. It is not 
difficult to find the difference between Chinese and English 
attributes from the table. For example, there is no AS in 
English and only one unvoiced vowel "axh" exits in the  
phoneme set of Timit. 

Tab. 1 Consonant attributes categories list 

 Attributes Phone set (Ch/En) 

P
A 

Bilabial b p m p b m w 
Labiodental f f v 

Alveolar 
d t l n 
t l el ch sh jh zh dx nx 

Dental c s z  s dh en n r z th d
Retroflex zh ch sh r  

Palatal j q x y  
Velar g k h k g ng  

M
A 

Stop g p d t g k t p k b d g 

Fricative f s sh r x h 
sh th f hh dh hv v w 
zh s z 

Affricate z zh c ch j q ch jh 
Nasal m n  en m nx ng n 

Lateral l el l 
Approximant  dx 
Tap or Flap  r y 

A
S 

Aspirated p t k c ch q 
Unaspirated b d g z zh j 

N/A f h l m n r s sh x vowels 

V
O 

Voiced 
l m n r vowels 
b dh dx d el en g jh hv l m nx ng n r 
v w y zh z 

Unvoiced 
b c ch d f g h j k p q s sh t x z zh
Other_vowels 
ch sh s th t f p hh k axh 

B. Definition of vowel speech attributes 

Chinese finals composed of multiple vowels and nasal 
vowels(e.g., “en”, “iang”, etc.) are relatively complex 
compared to the initials and attributes of Chinese finals are 
continuous values. Therefore, we discretize these continuous 
values into different dimensions, subsequently get the set of 
speech attribute of each final based on IPA phonemes.  What 
deserves our attention is that there are three types of attribute 
set in the Chinese finals, which describe how many 
dimensions exist in this final. For example, the Chinese final 
"iao" was described as three IPA phonemes, so it is three 
dimensions in each attribute. In Table 2, four other Chinese 
vowel attributes are shown. As the complexity of multi-
dimensional finals, only all dimensions of each attribute and 
corresponding Uni-dimensional finals are listed. 

In addition, the vowels in Chinese and English differ 
greatly in tongue position(TP). In the past works, the TP were 
roughly defined as three dimensions: front, middle and back 
[20]. In order to describe the Chinese vowels more accurately, 
we divided TP into five dimensions and seven dimensions 
respectively according to the definition of Chinese phonetics 
and IPA. Since the five-dimensions TP can directly 
correspond to the initials, we try to model the finals and 
initials simultaneously in the PA category. There are more 
detailed seven-dimensions TP in the TF category. Moreover, 
the Chinese initial is marked as "consonants"  in TF, RO and 
TH.  

Tab. 2 Vowel attributes categories list 

 Attributes Phone set (Ch/En) 

P
A 

Dental ii  
Retroflex iii  

Palatal/Front i v iy ih ae eh
PA-Central a ax ix ux axh axr er 
Velar/Back u aa ah ao uw uh 

T
H 

High i ii iii v u ix iy ux uw 
Second H ih uh 

Half H
Middle  axh axr ax 
Half L  ah ao eh er 

Second L ae 
Low a aa 

T
F 

Front 2 ii  
Front 1 iii  
Front i v ae eh iy 
Half F ih 
Central a axh axr ax er ix ux
Half B  uh uw 
Back u aa ah ao 

R
O 

Rounded u v ao uw ux 

Unrounded a i ii iii 
aa ae ah ax eh er ih ix 
iy uh axr axh 
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III. MISPRONUNCIATION DETECTION  BASED  ON FSA 

MODELING METHOD 

The frame-level attribute features can be used to formulate 
linguistic knowledge for pronunciation changes caused by 
either regional accent or co-articulation as context-dependent 
rules associated with substitutions of different features. In this 
work, we obtained the corresponding frame-level attribute 
feature after modeling the above seven attribute detectors. 
The FSA-based mispronunciation detection framework is 
shown in Figure 1.  

A. FSA-based modeling 

HMM/TDNN framework is used to design attribute 
detectors in the proposed approach, and Time-Delay Neural 
Networks (TDNN) have been shown to be a good method for 
the classification of dynamic speech sounds such as voiced 
stop consonants[21]. Moreover, HMM-based ASR typically 
model each phoneme using 3 states (begin, middle, end) to 
account for co-articulation, and previous work has shown that 
using only the middle frames for training speech attribute 
detectors leads to the best results[22]. In the FSA-based 
modeling process, the context-dependent HMM may be over-
fitting for the Chinese pronunciation habit and the TDNN 
already has the ability to simulate the long-term dependence 
of the speech attribute. Therefore we compared the  
performance of three modeling methods, namely Monophone 
HMM+TDNN, Triphone HMM+TDNN, Monophone 
HMM+Context-independent DNN. 

In the field of ASR, there are methods like i-Vectors to 
adapt neural networks to different speakers, and these 
methods show that neural networks benefit from additional 
input features. Hence,  i-Vector  features are used to 
distinguish speaker information and train deep neural 
networks with MFCC,  which can eliminate interference of 
speaker information in universal-attribute detection tasks at 
the feature level.  

According to above the FSA method, we established seven 
TDNN-based attribute classifiers. However, modeling the 
initials and finals of Chinese respectively led to an 
unbalanced distribution of training data. For example, the 
useless initial label "consonants" in the TH category has 
nearly half of the training data. The phone-based background 
model (PBM) is adopted to address this issue. The key idea is 
to generate a multiple-label representation of the useless class, 
which can be achieved by dividing N/A classes into several 
sub-classes. 

B. FSA-based detection framework 

The front-end feature extraction module consists of a bank 
of speech attribute classifiers, and mispronunciation detection 
can be defined on various time-scales, namely supra-
segmental (e.g., lexical stress), segmental (e.g., substitution of 
phonetic units), and sub-segmental (e.g., voicing feature 
activated for a canonical unvoiced phone [23,24]). Expanded 
frames of input speech (MFCC) and i-Vector features are fed 
into each  front-end classifier, then the current frame 
likelihoods pertaining to each possible attribute within that 
category are generated. As shown in Figure1, a group of the 
frame attribute posteriors was used to evaluate the cross-
language ability of FSA modeling methods on Chinese and 
English test sets,  and feed into the back-end module for 
segmental mispronunciation detection, and generate phoneme 
level posterior probability for sub-segmental 
mispronunciation detection. Moreover, we have completed 
pronunciation error detection on the Russian L2 learner 
corpus, in which the phoneme boundary information of the 
audio is also obtained by another independent force alignment.  
Equation (1) is used to calculate phone level log posterior by 
force-alignment [25]: 

,)|(log
1

),;|(log s  
∈−

= e

s

t

t
pS

t
se

e osP
tt

ttopP            (1) 

Where ot is the input feature at frame t; ts and te are the start 
and end time of unit p, obtained by forced alignment or 
annotation information from Timit. P(s|ot) is frame level 
likelihood; {s∈p} is the set of context-dependent or context-
independent units, whose central unit is p. 

IV. ATTRIBUTE RECOGNITION EXPERIMENT 

A. Speech corpora 

The training speech corpus is from the Chinese National 
Hi-Tech Project 863 for Mandarin LVCSR system 
development [26], and the Aishell 178 hours Mandarin corpus 
on Kaldi toolkit. A total of 250,000 utterances spoken by 
1800 speakers (300 hours) were used for acoustic modeling. 
Sufficient data ensures the robustness based on FSA method 
modeling.  There are two test sets, one is 7000 utterances of 
Chinese data from Aishell corpus and the other is 6000 
utterances of English data from Timit. Chinese L2 speech 
database can be referred to BLCU inter-Chinese speech 
corpus[27], containing 5000 utterances spoken by 48 Russian 
learners of Mandarin. 

 

 
Figure 1: the FSA-based mispronunciation detection framework
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Figure 2: FSA based detectors accuracy on Chinese test set and English test set. 

 

B. Experimental results 

In the following sections, native-language (Ch) and 
cross-language (En) speech attribute detection are 
evaluated, and the experimental results of all attributes 
from there modeling methods (Triphone HMM+TDNN, 
Monophone HMM+TDNN, Monophone 
HMM+Context-independent DNN) are shown in Figure 
2. The top two curves show reliable performance on the 
native-language test set, and the below three curves 
demonstrate that relatively low attribute accuracy are 
achieved on across-languages test set, especially the 
vowel part. This can be explained by thinking of the 
complicated structure of the English vowels.  On the 
Chinese test set, the performance of the two methods is 
comparable, but on the English test set, the performance 
as the whole is better when the model has less Chinese 
context information. This phenomenon reflects the 
linguistic independence of universal speech attributes. A 
more in depth analysis reveals that several attributes,  
such as Affricate (93%) and Voiced (78%), can achieve 
good attribute accuracy on the English test set. 
Subsequently, we find that attribute accuracy from TF 
with more refined classification is comparable with PA 
on En, which shows that TF can better adapt to cross-
language speech attributes.  

V. PRONUNCIATION ERROR DETECTION 

In order to detect pronunciation errors on sub-
segmental and segmental, F-score and diagnostic 
accuracy (DA) are used to evaluate the performance of 
each mispronunciation system. 

 %100*
N

NN
DA CM +=  (1) 

 %100*
D

M

N

N
Precision =  (2) 

 %100*
E

M

N

N
Recall =  (3) 

 
RecallPrecision

RecallPrecision
F-score

+
= **2

 (4) 

where NM  is the number of true mispronunciations 
detect and the detection results are consistent with the 
human annotations. NC is the number of true correct 
pronunciation detected by the system. ND is the number 
of all detected pronunciation errors. NE is the total 
number of pronunciation errors in the test set. N is the 
number of phone or attribute in the test set. Table 3 
shows the sub-segmental mispronunciation detection 
performance. Table 4 compares two systems: the FSA-
based and segmental-based systems with the same 
training set at segmental level. We selected seven 
classifiers with better detection performance at sub-
segmental level to evaluate the pronunciation quality of 
second language learners and listed in table 3. We can 
see that FSA-based methods can generalize well in 
different speech attributes. The performance of TF is 
better than PA, which indicates that the refinement of 
speech attribute categories is beneficial to 
mispronunciation detection. Compared with the 
segment-based pronunciation error detection, detection 
performance of FSA-based pronunciation error is higher. 

Table 3: Diagnostic accuracy at the sub-segmental mispronunciation 
detection. 

 VO AS MA PA TH TF RO 

DA 89% 89% 87% 83% 86% 84% 88% 

Table 4: DA and F-score at the segmental mispronunciation. 

 FSA-based Segment-based 

F-score 71.5% 63.5% 

DA 86.5% 84.3% 

VI. CONCLUSIONS 

In this paper, we proposed a modeling method based on 
the fine-grained speech attribute(FSA) on Chinese 
corpus to detect mispronunciation. Experimental results 
have shown that this approach reliably extracts frame-
level accuracy rate of speech attributes and achieves 
better detection results than segment-based approaches. 
By comparing TF and PA, the benefits of accurately 
describing speech attributes are also demonstrated. On 
the English corpus, experimental results show the FSA 
can be used in any language theoretically. 
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