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Abstract—In this paper, we propose using phonemic informa-
tion in addition to acoustic features to improve the intelligibility
of speech uttered by patients with articulation disorders caused
by a wide glossectomy. Our previous studies showed that voice
conversion algorithm improves the quality of glossectomy pa-
tients’ speech. However, losses in acoustic features of glossectomy
patients’ speech are so large that the quality of the reconstructed
speech is low. To solve this problem, we explored potentials of
several additional information to improve speech intelligibility.
One of the candidates is phonemic information, more specifically
Phoneme Labels as Auxiliary input (PLA). To combine both
acoustic features and PLA, we employed a DNN-based algorithm.
PLA is represented by a kind of one-of-k vector, i.e., PLA has a
weight value (<1.0) that gradually changes in time axis, whereas
one-of-k has a binary value (0 or 1). The results showed that the
proposed algorithm reduced the mel-frequency cepstral distortion
for all phonemes, and almost always improved intelligibility.
Notably, the intelligibility was largely improved in phonemes /s/
and /z/, mainly because the tongue is used to sustain constriction
to produces these phonemes. This indicates that PLA works well
to compensate the lack of a tongue.

I. INTRODUCTION

Speech is the primary means of communication for human
beings and plays a crucial role in maintaining one’s quality
of life in everyday life. This is also true for individuals
with speech production problems. In this context, intensive
studies have been performed to facilitate improvements in the
speech of patients with tongue resection or tongue movement
disorders [1], [2], [3].

As a new approach from a speech processing point of view,
we proposed to improve speech quality uttered by glossectomy
patients using voice conversion algorithms [4], [5], [6]. Voice
conversion (VC) [7], [8], [9], [10] is a technique to modify
one speaker’s voice to another speaker while keeping its
linguistic information unchanged. To improve intelligibility
of glossectomy patients’ speech, we recruited a glossectomy
patient as a source speaker and a professional narrator or
a healthy speaker as a target speaker. Our previous studies
showed that acoustic features mapping based on VC improves
speech intelligibility [4], [5] and direct waveform modification

using spectrum differential improves the naturalness of the
reconstructed speech [6]. However, the quality of the recon-
structed speech was not satisfactory.

To improve the speech intelligibility, in this paper, we
propose using phonemic information in addition to acoustic
features. A motivation and a basic idea are as follows. Be-
cause speech uttered by glossectomy patients is quite different
from that of a healthy speaker, acoustic features extracted
on a frame-by-frame basis are sometimes not good enough
to identify phonemes, which results in failures of finding
feature correspondences using parallel corpus. To reduce the
ambiguity, a possible solution is to use consecutive acoustic
features or segment features. In other words, a longer period
of observation enables to deal with co-articulation phenomena,
which results in disambiguation.

There are several existing studies that uses a kind of
phonemic information for VC. For example, in [11] and [12],
phoneme labels coded by HMM are used in VC and speech
coding, respectively. In [13], Phonetic Posteriorgrams (PPGs)
are used in VC. These papers support the effectiveness of
employing the phonemic information. Therefore, we employed
the phonemic information to improve the intelligibility of
glossectomy patients’ speech.

In this paper, we examine performances under ideal con-
ditions to make sure the potential of the basic idea; i.e.
supposing that phonemic information is provided in advance.
Moreover, we employ a DNN-based algorithm to combine
both acoustic features and phonemic information. Through a
subjective experiment, we show how the proposed algorithm
works well to reconstruct spectrum features from perceptual
point of view.

The rest of the paper is organized as follows. In Section
2, we describe the phonemic information used for training. In
Section 3, we explain the algorithm that uses both acoustic
features and phonemic information. In Section 4, we present
our evaluation results and a discussion. Finally, in Section 5,
we present our conclusions and suggest avenues for future
work.
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Fig. 1. Example of phoneme information. It is consisting of frame-by-frame
vector elements corresponding to phoneme labels, which are represented at a
top of the figure.
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Fig. 2. Outline of assignment of phoneme by dynamic time warping (DTW).

II. PHONEMIC INFORMATION FOR THE VOICE CONVERSION

As the phonemic information, we use 45 kinds of Phoneme
Labels as Auxiliary input (PLA). The phoneme labels are as
follows: vowels (i, e, a, o, u), stops (p, t, k, b, d, g), fricatives
(s, z, sh, h, f, j), affricates (ch, ts), nasals (m, n, N), liquid (r),
semivowels (y, w), contracted sounds (by, gy, hy, ky, my, ny,
py, ry), double consonants (pp, tt, kk, dd, ss, ff, tts, cch, ssh,
kky, ppy), and pause.

Figure 1 shows an example of phonemic information, or
PLA, generated from phoneme labels. It is consisting of
a frame-by-frame time sequence of 45 dimension vectors.
The phoneme information is generated by phoneme label
assignment with DTW and post processing as explained in
the following subsections.

A. Phoneme label assignment with DTW

Figure 2 shows the flow of phoneme label assignment for
glossectomy patient’s speech whose phoneme is known but
time information is unknown. Our proposed method used ATR
speech database, which contains phoneme annotations with
precise time information. First, time alignment is carried out
by DTW between the acoustic features of the glossectomy
patient’s speech (glossectomy mcep) and those of the ATR
speech database (DB speech mcep). Here, the length of the
glossectomy patient’s speech is changed to match that of
the DB speech. Finally, phoneme labels are assigned to the
glossectomy patient’s acoustic features according to the DTW
path.

/d/ /d/ /o/ /o/ /g//o,g/ /o,g/ /o,g/ /o,g//d,o/ /d,o/ /d,o//d,o/

/d/ /d/ /d/ /o/ /o/ /o/ /o/ /g/ /g//o/ /g//d/ /o/

1.0 1.0 1.0 0.67 0.33 0.0 0 0 0 0 0 0 0
0 0 0.0 0.33 0.67 1.0 1.0 1.0 1.0 0.67 0.33 0.0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 0 0.0 0.33 0.67 1.0 1.0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

(1) Concatenate
& Expand

(2) One-hot encode
& Crossfade

/d/
/o/
⋮

/g/
⋮

Fig. 3. Generating process of phonemic information from phoneme labels.
Our phonemic information is like as one-of-k vector, but it changes gradually
at around each phoneme boundaries (N = 2 frames).

B. Phoneme information generation with post processing

In general, acoustic features gradually change due to co-
articulation, therefore, the associated phonemic information
should be also changed gradually as similar as the acoustic
features. Figure 3 shows an example of a generating process
of the phoneme information from frame-by-frame phoneme
labels estimated by previous Subsection II-A.

Around a phoneme boundary for N frames, the weight of
one-of-k vector is linearly interpolated from 1 to 0, or vice
versa. Note that the figure shows the example for the parameter
N = 2.

III. VOICE CONVERSION USING PHONEME LABELS AS
AUXILIARY INPUT

The voice conversion system is divided into two parts, a
training part and a conversion part. This system is based on a
spectral differential modification method [14] with the DNN
conversion model [6].

A. Training

Figure 4 presents an outline of the training process. The
process is divided into a parallel corpus generation and a
training component of a conversion model.

The process of generating parallel corpus is as following.
First, the acoustic features of the source speaker and target
speaker are extracted by speech analysis. Here, the dynamic
feature ∆xt is calculated from the static feature xt of the
source speaker in a frame t. The dynamic feature ∆yt is also
calculated from yt as same as the calculation of ∆xt. The
static features and the dynamic features are concatenated and
used as a feature vector. The source speaker’s acoustic feature
vector is described as Xt = [xT

t ,∆xT
t ]T, and target speaker’s

acoustic feature vector is described as Y t = [yT
t ,∆yT

t ]T. T
denotes the transposition of a vector. Then, the static acoustic
feature zt of the ATR database speaker and the phoneme label
lt are described as Zt = [zT

t , l
T
t ]T. As described in the II-A

section, phoneme labels are assigned to Xt and Y t using Zt.
Finally, we obtain the source speaker’s feature vector X ′t =
[xT

t ,∆xT
t , l

T
t ]T and the target speaker’s feature vector Y ′t =
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Fig. 5. Conversion outline.

[yT
t ,∆yT

t , l
T
t ]T. The source and target features are already

aligned because the time axis of the ATR database speaker is
fixed in DTW.

The process of training a VC model using the corpus is as
following. The differential acoustic feature Dt = [yT

t ,∆yT
t ]−

[xT
t ,∆xT

t ] is generated by subtraction between source feature
and target feature. Finally, the function to map input feature
X ′t to output feature Dt is trained by DNN [6].

B. Conversion

Figure 5 shows the conversation outline. During conversion,
the source speaker’s acoustic feature vector Xt is extracted by
speech analysis. Next, we obtain X ′t as in the training step
using ATR database speech. Here, the time axis of source
speaker’s feature is fixed. Next, differential acoustic feature
vector D̂t convert to X ′t by trained DNN. Finally, converted
speech is synthesized by directly filtering the input waveform
using the D̂t by MLSA filter.

IV. EVALUATION EXPERIMENTS

A. Experimental conditions

For the training and validation dataset, we used 400 sen-
tences and 50 sentences uttered phrase-by-phrase, respectively.
For the evaluation dataset, we used 53 sentences uttered
sentence-by-sentence. The sampling frequency was 20 kHz.
The speaker is a healthy male person #1 (M1). To simulate
a glossectomy patient’s speech, we fabricated an intra-oral
appliance that covers the lower dental arch and tongue surface
to restrain tongue movements during speech [5]. The speaker
’M1’ uttered speech with and without the appliance to simulate
speech before and after a glossectomy. To fix notation, in
the remainder of the paper speech uttered by M1 with the
appliance is denoted SPM1 (Simulated Patient Male1).

To evaluate the proposed method, we compare two methods
as follows:
• DIFF-VC: DNN-based VC using the spectral differential

method [6] (baseline);
• DIFF-PLA-VC: DIFF-VC using Phoneme Labels as

Auxiliary input (proposed).
Spectral envelopes were extracted by WORLD [15] and

parameterized to the 0-25th mel-cepstral coefficients and their
dynamic features. The frame shift was 5 ms. Mel log spectrum
approximation (MLSA) filter [16] was used as the synthesis
filter.

The PLA is a 45 dimensional vector obtained by processing
introduced in Section II-B. The range of post-processing N
was 5 frames. The input feature is 97 dimensional vector
[mcep, ∆mcep, PLA], and the output feature is 52 dimensional
vector [diff mcep, ∆diff mcep].

Regarding DNN, we adopted multilayer perceptron (MLP)
as the conversion model. In each layer, the number of units
is set as [97, 1024, 1024, 1024, and 52]. The rectified linear
units were used in the hidden layers, and the linear activation
function was used in the output layer. The weights of the
DNN were initialized randomly, and Adam was used for
optimization.

B. Objective evaluation

Mel-cepstral distortion is used to objectively measure the
spectral distance between converted speech and target speech.
The feature used for the evaluation was extracted from the
converted speech by speech analysis. Figure 6 shows the
results of objective evaluation. There were 40 phonemes,
excluding those not included in the evaluation data set. The
proposed method (DIFF-PLA-VC) is better than the baseline
method (DIFF-VC) in 36 out of 40. In particular, the proposed
method has a great improvement in mel-cepstral distortion
for fricatives, mainly because the tongue is used to sustain
constriction for a while to produces fricatives.

C. Subjective evaluation

A dictation experiment was carried out to measure speech
intelligibility. There were three types of speech in the ex-
periment: the original simulated patient’s speech (ORIG),
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Fig. 7. Dictation experiment for speech intelligibility.

and two converted speech types: (DIFF-VC and DIFF-PLA-
VC). In order to avoid guessing correct answers, healthy
person’s speech was not used in the subjective evaluation. For
each speech type, 50 sentences were created. A total of 150
sentences were randomly shuffled. The 10 subjects listened to
each speech and wrote Kana characters down as they were
heard. The phonemic recognition error rate was calculated as
follows. After decomposing the correct and answered sentence
into syllables, the number of wrong phonemes was counted by
comparing the correct syllables and the answered syllables for
each phoneme. The error rate was calculated by dividing the
number of wrong phonemes by the total number of phonemes.
Note that if the correct and answered sentence pairs had
different phoneme numbers, they were manually adjusted.

Figure 7 shows the results of subjective evaluation. In
almost all phonemes, the intelligibilities were improved. Par-
ticularly in fricatives, the proposed method (DIFF-PLA-VC)
is better than the baseline method (DIFF-VC). According to
the results, we can say that proposed method is effective.

D. Comparison of the spectrograms

The causes of improving the phonemic intelligibility can
be observed in spectrograms. Figure 8 shows spectrograms
that compare the VC from SPM1 to M1 by DIFF-VC and
DIFF-PLA-VC. As indicated in the regions surrounded by
the red dotted lines, high-frequency components of fricative
/s/ were weak in the input speech (b), however, it was
reconstructed in the converted speech (c) and (d). Comparing
(c) and (d), the proposed method (d) reconstructed the fricative
more clearly than the baseline method (c). Thus, the proposed

method, using phoneme labels as auxiliary input, works well
to compensate the lack of a tongue.

V. CONCLUSIONS

We proposed an algorithm to improve intelligibility of
reconstructed glossectomy patient’s speech using phoneme
labels as auxiliary input in DNN-based VC. During evaluation,
it was found that the proposed method was better than the
baseline method, especially for fricatives. This fact was clearly
observed in the spectrograms, i.e., the proposed method could
reconstruct stronger energy than the conventional method in a
high-frequency band of fricatives.

Through the above experiments, we confirmed the potential
of phoneme labels for improving intelligibility of speech
uttered by the glossectomy patient. As mentioned in the
introduction, we currently examine the performances under
ideal conditions; phoneme labels are given in advance. As the
next step, we have to estimate phoneme labels. To estimate
phoneme labels as correctly as possible, we are now trying
to estimate phoneme labels using not only speech signals but
also lip movements and other biophysical signals.

There is another future work in our minds. As explained
in the introduction, a motivation of introducing phonemic
information is to use consecutive acoustic features or segment
features. Because, in this paper, we confirmed the potential of
segment features, we are interested in finding an appropriate
way to express segment features instead of phoneme labels.
The phoneme labels are so rigid to express segment features
that we would like to express them more flexibly such as a set
of parameters with probability density functions and so on.
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(a) The normal speaker “M1” (Target speech)

s a m i shi s o u d a t a(closure)

(b) The normal speaker with appliance “SPM1” (Input speech)

(c) The converted speech by DIFF-VC (Output speech)

(d) The converted speech by DIFF-PLA-VC (Output speech)
[sec]

Fig. 8. Comparisons of the spectrograms.

VI. ACKNOWLEDGEMENTS

This work has been supported by JSPS KAKENHI
18K11376.

REFERENCES

[1] R. Cantor, T. Curtis, T. Shipp, J. Beume, and B. Vogel, “Maxillary
speech prostheses for mandibular surgical defects,” J. Prosthetic Den-
tistry, vol. 22, pp. 253–260. (1969)

[2] R. Leonard, and R. Gillis, “Differential effects of speech prostheses
in glossectomized patients,” J. Prosthetic Dentistry, vol. 64, pp. 701–
708. (1990)

[3] K. Kozaki, S. Kawakami, A. Gofuku, M. Abe, and S. Minagi et al.,
“Structure of a new palatal plate and the artificial tongue for articulation
disorder in a patient with subtotal glossectomy,” Acta Medica Okayama,
vol. 70, no. 3, pp. 205–211. (2016)

[4] K. Tanaka, S. Hara, M. Abe, and S. Minagi, “Enhancing a Glossectomy
Patient’s Speech via GMM-based Voice Conversion,” Proc. APSIPA
Annual Summit and Conference. (2016)

[5] K. Tanaka, S. Hara, M. Abe, M. Sato, and S. Minagi, “Speaker Dependent
Approach for Enhancing a Glossectomy Patient’s Speech via GMM-based
Voice Conversion,” Proc. INTERSPEECH, pp. 3384–3388. (2017)

[6] H. Murakami, S. Hara, M. Abe, M. Sato, and S. Minagi, “Naturalness
Improvement Algorithm for Reconstructed Glossectomy Patient’s Speech
Using Spectral Differential Modification in Voice Conversion,” Proc. IN-
TERSPEECH, pp. 2464–2468. (2018)

[7] M. Abe, S. Nakamura, K. Shikano, and H. Kuwabara, “Voice conversion
through vector quantization,” Proc. ICASSP, S14.1, pp. 655–658. (1988)
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