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Abstract—We have developed a robust scheme for blindly
estimating the speech transmission index (STI) based on a
convolutional neural network (CNN) with temporal amplitude
envelope as features. When assessing the quality of acoustics
in a room where there are people present, STI needs to be
estimated without measuring the room impulse response (RIR)
or using a modulation transfer function (MTF). This estimation
can be problematic because a blind method based on the MTF
has low accuracy when the stochastic models of RIR and the
background noise are mismatched to real sound environments.
We improve the accuracy of STI estimation in noisy reverberant
spaces by using a CNN that takes the entire temporal amplitude
envelope of an observed speech signal as its input. Simulations
were performed to evaluate the proposed scheme and results
showed that it can maintain the appropriate accuracy under
various realistic room acoustic conditions with an average RMSE
of 0.12 and correlation of 0.87. These results demonstrate that
the proposed scheme can robustly and blindly estimate STIs in
noisy reverberant environments.

[. INTRODUCTION

Background noise and reverberation in common spaces such
as banks, concourses, or restaurants interfere with hearing
ability. Knowing the level of listening difficulty is essential
for manipulating the speech intelligibility of listeners [1]. For
enclosures, many objective indices and acoustic parameters
have been proposed to evaluate the listening difficulty or
intelligibility level, such as reverberation time (Z§q), the clarity
index (Cgp), and the speech transmission index (STI) [2]. The
STT as an IEC 60268-16 standard, which highly correlates with
listening difficulty, is an objective index to assess the speech
transmission quality in a given room [3], [4]. Calculating STI
is based on the concept of the modulation transfer function
(MTF), which describes room acoustic characteristics as a
system transfer function in the modulation frequency domain
by using a set of sine-wave modulated stimuli in different
frequency bands [5], [6], [7]. In addition to deriving STI from
the MTF, in the time domain, a room impulse response (RIR),
which uses a brief impulse signal into a room, can be used.

The problem with MTF and RIR measurements is that they
have to be done in sound fields where people are excluded. In
common spaces, it is thus difficult and impractical to obtain
STIs, so in everyday situations, a method for estimating STIs
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“blindly” without measuring MTF or RIR is required. Many
blind estimation techniques have been proposed and can be
categorized into two groups: one based on machine learning
(ML) [8], [9], [10], [12] and the other on a deterministic
approach [13], [14].

Early on in the development of ML-based methods,
a multilayer perceptron network (MLP) was proposed to
estimate STIs. The MLP used 14 data points of envelope
spectra as features[8]. An improved MLP model with
additional inputs, which were the features from the power
envelope of a speech signal using principal component
analysis, soon followed [9]. However, the accuracy of these
methods when it comes to general pronunciation is poor
due to the limitations of the features and MLPs. In the last
decade, a major drawback of the ML-based methods—namely,
that they require a huge amount of learning data—has been
solved by using synthesized RIRs, and modern ML techniques
are now being applied to the estimation of room acoustic
characteristics. For example, long short-term memory (LSTM)
has been used to estimate reverberation time Tgo from
modulation spectra[11], where the modulation spectrogram,
which is extracted from a reverberant speech signal, is the
input of the LSTM. Recently, a deep convolutional neural
network (deep CNN) has been utilized to directly estimate
STI from a raw reverberant speech signal by means of end-
to-end model [12]. While this model has high accuracy under
reverberant conditions, it has not yet been evaluated in noisy
environments, and thus its robustness remains in question [12].

As for the deterministic approach, an MTF-based method
has been previously proposed in which the RIR and
background noise are assumed as stochastic models [13], [14].
The estimated RIR and estimated noise are used to derive
the corresponding STIs. The MTF-based approach delivers a
good performance without requiring massive amount of data,
but the problem is that the mismatch between the models and
real environments reduces the accuracy.

In this study, we incorporate the temporal amplitude
envelope of observed speech signals, i.e., the basis of the MTF,
into a CNN to resolve the robustness issue. The performance is
then consistent regardless of noise and reverberant conditions.
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II. BACKGROUND

The previous MTF-based method uses an RIR model for
estimating STI[14]. In a noisy reverberant environment, an
observed speech signal () is assumed to be a convolution
between an original signal x(¢) and RIR h(t) plus a
background noise n(t), as.

y(t)=(t) * h(t) + n(t), M

where * represents the convolution of two signals z(t)
and h(t). Schroeder’s RIR model is modified here into a
generalized RIR model [6], [13], i.e.,

h(t)=at® Ve~ Tx ey (1), 2)

where a is the gain factor, b is the order of the RIR, Ty is the
reverberation time, and ¢, (t) is a carrier of white Gaussian
noise (WGN). Then, a noise signal can be modeled as

n(t)=e,(t)en(t), 3)

where e, (t) is the temporal amplitude envelope of a signal
and ¢, (t) is a WGN carrier. Then, the energy of the observed
signal in (1), i.e., the power envelope, is approximated as

ez(t) =c2(t)

en(t) +ea(t). “)

The definition of the MTF of a system, namely, its frequency
transmission characteristics, is presented by the fraction of the
Fourier transform of the response of the system and its total
energy [5]. The MTF at a modulation frequency f,,, m(f,.),
is defined as

/ R2(t)e 92 Imt gy
0

/Ooo R2(t)dt ’

where h(t) is the room impulse response (RIR). The MTF is
represented by modulation frequency f,,, reverberation time
TR, the order of RIR b, and signal-to-noise ratio (SNR), and
is defined as

m(fm» T37 b» SNR)

m(fm) = &)

2b—1
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The RIR in (2) is obtained by estimating two parameters:
Tr and b. Then, we can calculate STI from this estimated
RIR.

Tr and b are estimated on the three specific conditions
and assumptions: the MTF at 0 Hz is 0 dB, the original
modulation spectrum at the dominant modulation frequency
fa is the same as that at 0 Hz, and the entire modulation
spectrum of the reverberant signal is proportionally reduced by
the reverberation time [14]. Thus, these relations can be used

18-21 November 2019, Lanzhou, China

for estimating the Tz and b of the RIR model by minimizing
the root mean square (RMS), defined as

2

1
52 |E fml

RMS(TR,b) - m(fdaTRab)QL (7)

where Ey(f,,,) is the modulation spectrum of the envelope
of a reverberant signal y(t) at a specific frequency f,,, and
m(fa4, Tr,b) is the derived MTF at the frequency f; from the
RIR model, as in (6). The SNR is estimated from the mean
power ratio of speech sections to noise sections using robust
voice activity detection. This estimated RIR is then used to
calculate MTF and STI by the following steps.

1) Calculate MTFs in seven octave bands. Let my(F;)
denotes the MTF of a subband % of the octave filter
bank (where the center frequencies range from 125 Hz
to 8 kHz for k = 1 to 7) with the modulation frequency
F;. Note that F; ranges from 0.63 Hz to 12.5 Hz for
i =1 to 14. The my(F;) , from the RIR in (2), can be
calculated by

1

\/{ (QWFHT:;B)]Z) :

2) Calculate signal-to-noise ratios (SNRs). For each k£ and
i, the SNR, N (k,1), is defined as.

mi(Fi) )

my(F;) = (8

N(k,i) =101 9

( Z) 0 0810 (1 mk(FL) ( )

3) Calculate transmission indices (TIs). For each k£ and
i, the TI, T'(k,i), is calculated by normalizing the
corresponding SNR, N (k, ).

1, if 15 < N(k, i),

T(k,i) =< 35 (N(k,i) +15), if —15 < N(k,i) <15,

0, if N(k,i) < 15.
(10)
4) Calculate modulation transmission indices (MTIs). For
each k, MTI(k) is the average of T'(k, ) for all 4, i.e.,

ZTk:?

5) Calculate STL The STI is a weighted average of MTI(k)
for all k, where the weights W (k) are distributed as
follows: W(1) = 0.129, W(2) = 0.143, W(3) =
W(4) = 0.114, W(5) = 0.186, W(6) = 0.171, and
W (7) = 0.143.

MTI(k (11)

7
STI= > W (k)MTI(k).
k=1

12)

Finally, the STI of a given room is represented by a number
between 0 (bad listening) and 1 (excellent listening).
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Fig. 1: Block diagram of the proposed method.
III. PROPOSED METHOD 1
As only information of the system is an observed speech 5; 0
signal, we assume the STI estimation as a blind deconvolution 1 |
with regression problem. The STI is approximated from the 5
temporal amplitude envelope of the observed speech signal. 1
We propose the scheme that consists of the temporal envelope = 0
extraction and the CNN for estimating STIs, as shown in =
Fig.1. The CNN performs the convolution operation of an -1 S
output envelope signal with well-trained filters. The filters 1
learn the relationship between the output envelope signals and .
their STIs. A significant feature based on the concept of the =
MTF, that is, temporal amplitude envelope of the observed 4 ‘
speech signal is used as the feature of the CNN. Therefore, 0 1 2 3 4 5

this method can provide a good accuracy under noisy and
reverberant conditions. It means that the robustness of the STI
estimator is improved.

A. Temporal Amplitude Envelope Extraction

Since noise and reverberation influence the shape of the
envelopes of speech signals, an observed envelope can be used
to describe the property of a speech transmission channel,
which is a given room. In this study, instead of a few features
of modulation spectrum, we utilize the signal of the entire
temporal amplitude envelope along with their associated STIs
for training the CNN. The temporal amplitude envelope of
noisy reverberant speech signals, e, (t), can be extracted as

e,(t)=LPF [[y(s) +j - Hilbert(y(1))[],  (13)
where LPF [-] is a sixth-order Butterworth filter, which is
IIR low-pass filters, with a cut-off frequency of 20 Hz, and
Hilbert ( - ) is the Hilbert transform. In speech perception, the
significant modulation frequencies are between 1 and 16 Hz
[15]. Thus, we can significantly reduce the model complexity
by down-sampling the envelopes to 40 Hz. Then, the envelopes
are normalized to a unit scale to avoid bias due to different
amplitudes. Examples of speech signals and their temporal
amplitude envelopes under different conditions are shown in
Figs.2 and 3, respectively.

Time (s)

Fig. 2: Signals of (a) clean speech, (b) reverberant speech
(Tr=0.43 s), and (c) noisy reverberant speech (babble noise
at SNR of 5 dB and T, =0.43 s).
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Fig. 3: Temporal amplitude envelope of (a) clean speech, (b)
reverberant speech (I'r=0.43 s), and (c) noisy reverberant
speech (babble noise at SNR of 5 dB and Tr =0.43 s).
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B. Convolutional Neural Network

The CNN trained with observed reverberant envelopes
under conditions of various noise types and levels can be
used to determine the associated STIs. We assume a blind
STI estimation as a blind deconvolution with a regression
problem. The CNN performs the deconvolution operation of
the observed temporal amplitude envelope and solves the
regression problem. The CNN consists of three convolutional
layers and complementary layers, as shown in Fig. 1

In the design of a reasonable CNN, a convolution operation
in the time domain of an envelope signal is represented by
one-dimensional convolution in the first layer. Another one-
dimensional convolution is applied again to construct a new
two-dimensional data inspired by the deep CNN [12]. The final
two convolutional layers apply two-dimensional convolutional
filters to perform a regression task. From a mathematical
viewpoint, high-dimensional spaces expand the potential for
problem-solving. Similarly, in neuroscience, the middle layer
of the perceptron model contains more neurons than the other
layers [16]. Thus, here we assign the two middle layers is a
higher number of filters: 32 and 16, respectively.

For complementary layers, a pooling unit accompanies
a convolution layer for down-sampling as well as keeping
an invariance of the input. Here, max pooling, which is
a non-linear operation, corrects the highest value from the
neighbors. The outputs are then passed through an activation
function, which is a rectified linear unit (ReLU). The ReLU
function has been designed to deal with a vanishing gradient
problem, which behaves as a half-wave rectifier according
to f(xr) = max(z,0). The ReLU output is 0 when input
x < 0, and is a linear function when x > 0. We also utilize
a batch-normalization to scale the values to a unit norm. A
regularization technique called dropout is set with a probability
of 0.2 to avoid an over-fitting and memorizing problem. A
flattening layer or fully connected layer is an operator that
converts a two-dimensional array into a vector. The last layer,
called a dense layer, estimates output by a sum of the products
between the vectors and their weights, so that the estimated
STI as the output can be presented as

J
STI = SIGM (ZW@ai + b) ,

=1

(14)

where STI is an estimated STI, SIGM is a sigmoid function,
W is a weight matrix, a; is an input from a previous layer for
¢ to the total elements j, “®” is the element-wise operation,
and b is bias. The RMSprop is an optimization algorithm to
minimize the cost function, which is mean square error (MSE),
and the optimizer is set a learning rate of 0.001. These tunable
filters are updated along with the training process. The CNN
architecture is detailed in Tablel.

IV. EXPERIMENTS AND EVALUATIONS

To develop and evaluate this robust estimator, we used
noisy reverberant speech signals under different conditions
and their associated STIs as our datasets. These corresponding
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TABLE I: Convolutional neural network architecture.

No. Layer Type Parameters
1 Input Input shape = 374 x 1
2 Convolution!*t 128 filters, filter size =128 x 1, ReLU
3 Pooling Max pooling, size = 2,stride = 1
4 Convolution2"d 128 filters, filter size =5 x 1, ReLU
5 Reshape filter size =128 x 21
6  Convolution™ 32 filters, filter size =90 x 64, ReLU
7 Pooling Max pool, size = 2, stride = 1
8 Batch Normalization -
9 Dropout 0.2
10  Convolution*® 16 filters, filter size =23 x 32, ReLU
11 Fully Connected Sigmoid
12 Regression Output Mean-square-error

STIs as the ground truth are calculated from RIRs and noise
levels as in (6). The calculated STIs and the envelopes, which
are extracted from observed speech signals, are utilized for
training the CNN. Then, the results of estimated STIs are
analyzed on the basis of two statistical metrics: root-mean-
square error (RMSE) and correlation coefficient p.

A. Data Collection

Data are collected and allocated to three datasets: training,
validation, and testing. These include 29,000 four-second
excerpts of noisy reverberant speech signals re-sampled at the
rate of 16,000 samples per second.

The training set and validation set are generated from RIRs,
anechoic speech signals (clean signals), and noise signals.
The RIRs consists of 43 realistic RIRs from the SMILE2004
dataset and one hundred RIRs synthesized using the image
method [17], [18]. The 43 RIRs include different acoustic
parameters (i.e. Tr from 0.38 to 3.62 second) as reported
in [14]. Likewise, the synthesized RIRs are generated to
cover most conceivable possibilities of STIs from various
room properties. The distribution of this dataset is shown
in Fig.4. One hundred clean speech signals are randomly
selected from the CSTR corpus[19]. Note that these speech
signals are English sentences uttered by people of various ages,
genders, accents, and regions. Then, the noisy reverberant
speech signals are obtained by convolving RIRs with clean
speech signals and adding noises as in (1). These added noises
are a dataset from the NOISEX-92 corpus and include white
noise, pink noise, factory noise, and babble noise [20]. The
noise is cut so that its length is the same as that of the speech
signal. Then, we add these noise signals to the reverberant
signals, so that the SNR values are 5 dB, 20 dB, and infinity
dB (i.e., without noise).

The test dataset consists of unknown utterances in unseen
environments. These signals are the convolution between ten
Japanese speech signals (five male and five female speakers)
and seven RIRs plus noises [21]. These noise signals are
ambient noise, fan noise, and babble noise. Note that these
noises are recorded in the same room as the measured RIRs
from the ACE corpus[22]. The babble noise is composed of
the simultaneous speaking of ten talkers.
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Fig. 4: Distribution of STIs in training dataset.
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B. Experimental Setup

We used MATLAB for extracting the temporal envelope and
Python for implementing the CNN. The optimal parameters
of the CNN are trained on the Google Colaboratory for one
hundred iterations. This platform is a cloud service platform
run on a GPU (Tesla K80) that can complete the training
process in one hour. Note that the maximum iteration is one
hundred iterations, and the batch optimization is the size of
128 samples.

C. Evaluation Metrics

As estimating STI is a regression problem, two metrics are
used to evaluate the performance of the proposed method:
root-mean-square error (RMSE) and Pearson’s correlation
coefficient (p). A low RMSE and a highly correlated p indicate
a high performance of the STI estimator. Note that RMSE is
the square root of MSE, as used in optimizing the filters of
the CNN, so as to make the scale of the estimation error the
same as the scale of STI. RMSE is defined as

(15)

1L /A 2
RMSE = $ > (STIn - STIn> ,

n=1

where STI,,, is the estimated STI, STI, is the ground truth
calculated from RIR and SNR as in (5), n is an index of the
observed signal, and N is the total number of signals. The
second evaluation metric, i.e., correlation (p), is defined as

T

where STI,, is the average of STI,, and STT, is the average
of STI,.

(STI, — ST1,,)2(STI, — STI,,)?

M=

1

;o (16)

o N
(STIL, — STI,)* > (STI, — STL,)

1 n=1

=3

D. Results

In our experiments, we evaluate the proposed method using
two datasets respectively assigned as known and unknown
noisy reverberant environments. The baseline is the MTF-
based method to determine whether the proposed method
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can estimate STIs in any noisy reverberant environments.
The simulation of reverberant environments without noise is
conducted, as shown in Fig 5. The estimated results in the 43
rooms appear that our estimated STIs slightly scatter from the
dashed line of the ground truth. Our model has a little lower
accuracy than the baseline of the MTF-based method, so this
condition is analyzed in the discussion section. However, to
evaluate our method for more realistic environments, the blind
STI estimation in noisy and reverberant conditions are then
examined.

First, in known noisy reverberant environments, the results
of estimated STIs from reverberant speech signals with
different noise types, which are WGN, pink noise, babble
noise, and factory noise, are shown in Fig. 6. The horizontal
axis indicates STIs ground truth, and the vertical axis indicates
the estimated STIs. Ideally, the estimation results should be
close to the ground truth STIs, which is the diagonal dashed
line. The color symbols indicate two SNR levels. The blue
color stands for SNR of 20 dB, and the red color stands for
SNR of 5 dB. The symbols “o” and “x” correspond to the
estimation methods. The comparison with the baseline in terms
of RMSEs and correlation coefficients is shown in Table II.
These results demonstrate that the proposed method had lower
RMSE and higher correlation than the baseline in all noise

types.

« MTF-based

(RMSE = 0. 061) °

Proposed ° ///"
— 0.75]| = RusE-0.107) ox iz x
H — —~Ground Trutl x ok 8 *x
2 06 ox Qgﬂﬁg 5,
b o
9] K @ o0
E; //x o Ox o (o)
£045¢ =
g 03 x

0= : ‘ ‘ |
0 03 045 06 075 1
Calculated STI

Fig. 5: Estimated STIs from reverberant speech signals.

Second, to evaluate whether the proposed model is not
over-fitting and memorizing, the test dataset is utilized,
which is unknown utterances and unknown environments
with background noise. These background noise, including
ambient noise, fan noise, and babble noise, represent the
realistic background noise. The estimating results in terms
of RMSE and p are summarized in Table III. We can
see that the proposed model provided low RMSEs at an
average of 0.09,0.08, and 0.14 as well as high correlations
of 0.85 in the seven reverberant rooms with three real noise
conditions. Therefore, in these noisy reverberant environments,
the proposed method outperforms the MTF-based method in
robustness.
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Fig. 6: Estimated STIs from observed speech signals under background noise and reverberant conditions where the four noise
types are: (a) white noise, (b) pink noise, (c) babble noise, and (d) factory noise.

TABLE II: Estimated STIs under various conditions from TABLE III: Estimated STIs of speech signals in RIR and

SMILE corpus in the metrics of RMSE and correlation

(p) [17].

There are some advantages, limitations, and issues of
this work we would like to discuss. First, in the noise-
free experiment, there are a few reverberant speech signals
without additive noise in the training set. Hence, the proposed

. RMSE
Noise Method 20dB  5dB
MTF-based  0.25 033  0.72
White Proposed 0.07 0.09  0.90
MTF-based  0.20 023  0.71
Pink Proposed 0.08 0.14  0.85
MTF-based 0.29 0.18 0.64
Babble  Proposed 0.11 0.12 092
MTF-based  0.37 0.11  0.74
Factory  Proposed 0.13 0.18  0.82

V. DISCUSSION

background noise from acoustic characteristic corpus [22].

. RMSE
Noise Method 20dB  5dB
MTF-based 0.14 035 0.64
Ambient  Proposed 0.07 0.11  0.86
MTF-based 0.17 0.18 0.73
Fan Proposed 0.08 0.09 0.79
MTF-based 0.18 026  0.63
Babble Proposed 0.13 0.15 0.86

model has a little lower accuracy than the baseline of the
MTF-based method. Second, for the noisy condition, since
babble noise and factory noise are non-stationary noise,
these noise types are different from the noise model of
the MTF-based method. Hence, the model mismatch causes
inadequate accuracy, whereas the CNN learned from various
noise types can overcome this problem. The accuracy of
our method in such background noise and reverberation
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environments can be maintained. However, estimating STIs
from observed speech signals with factory noise is still
challenging because some inconsistencies of the estimated
results remain. The reverberant speech signals with non-
stationary noise might need for training separately to reduce
the outliers. Furthermore, with that said, our proposed not only
satisfies the accuracy and robustness, but also has advantages
over the existing methods in additional aspects, as follows.

First, the proposed model can reduce the operation time
from the conventional STI measurement time of 15 minutes
[7]. Our method, which uses the envelope of a short four-
second speech segment, can provide accuracy comparable
to that of the conventional method [4]. Hence, the operation
time is reduced by 180 times. Second, the proposed model
significantly reduces the computational time: it is 4, 666 times
faster than the MTF-based because it does not need to search
for the optimal parameters. On the other hand, the ahead-of-
time optimal filters of the CNN can calculate STIs promptly.

However, there is one concerning issue in this work that we
should point out here. Since the machine learning methods
are based on several hyper-parameters, there are enormous
possibilities for designing network architecture, and this makes
it difficult to reach an optimal solution. A robust estimation
model should be generalized enough for dealing with new and
random data. The generalized model needs to compensate for
the trade-off between high accuracy and model complexity.
For instance, we found that the longer envelope input the
CNN takes (i.e., from one second to four seconds), the more
accurate the performance of the CNN. In this study, we thus
empirically propose the CNN architecture to maintain the
acceptable performance. However, the model can be fine-tuned
so as to deliver an even better performance.

VI. CONCLUSION

We have presented a scheme to improve the robustness
of blind STI estimation in noisy reverberant environments.
Previously, even though the MTF-based method can estimate
STI according to the MTF concept, it suffers a mismatch
between the stochastic models and realistic environments,
thus resulting in unsatisfactory accuracy under some noise
conditions. To resolve this issue, we developed a robust
scheme that incorporates the entire temporal amplitude
envelope into a CNN. The CNN is trained by the
temporal envelope features, which are temporal amplitude
envelopes of observed speech signals and their associated
STIs under various noisy reverberant conditions. We carried
out simulations to evaluate the proposed model using
observed speech signals in known and unknown reverberant
environments with many noise types. The results showed
that the proposed method delivers good accuracy with the
average RMSE of 0.12 and the correlation of 0.87, thus
demonstrating that this method is robust against reverberation
and background noise without the need for retraining.
Additionally, an entire temporal amplitude envelope signal
is suitable features for training the CNN, so the proposed
method succeeds in blindly estimating STI in general public
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room acoustics. In the future, we will apply our scheme to
the estimation of other room-acoustic parameters and indices
and extend it for use in speech enhancement or speech privacy
control algorithms.
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