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Abstract—A language model-based design of reduced phoneme
set for acoustic model is proposed. In the case where the amount
of training data is too small to train each phoneme model, the
reduction of the phoneme set can lead to a reduced discrimina-
tive model of phonemes, which can increase homophones that
yield degradation of speech recognition. The proposed approach
enables us to reduce phonemes preventing the degradation,
regarding pronunciation/word sequence confusion rate calculated
from n-grams in a language model. In an experiment, the
phoneme set designed with proposed approach was applied to
Japanese large vocabulary speech recognition system. The word
error rate with full 39 phonemes set was 9.5%, while the error
rate with the 10 phonemes set designed with the proposed
approach was 11.1%. The degradation was able to be prevented
within 2%.

I. INTRODUCTION

An acoustic model (AM) which represents the statistical
properties of speech is used in various fields such as automatic
speech recognition (ASR), speaker recognition, speaker veri-
fication, language recognition, speech synthesis, etc [1], [2].
Recently, this technology has also been applied to the field of
brain machine interface (BMI) for the possibility of decoding
the brain activity during speaking, listening or imagining [3],
(41, [51, 61, [7].

Focusing on the training of an AM, it is the important issue
to determine the number of parameters to be trained within
the amount of given training data. In typical ASR systems,
a sequence of three phonemes named as triphone is likely to
be used for an AM. Generally speaking, the total number of
triphones is so large that not all of the triphones can be trained.
For example, if the size of the phoneme set is 40, the total
number of triphones amounts to 64,000 and the appearance
frequencies of triphones vary widely [8]. The triphones that
cannot be trained by sufficient data can degrade the accuracy
of the ASR system. An approach to overcoming this issue is
a decision tree clustering [9] that reduces the total number of
triphones. The decision tree clustering is the de facto standard
approach in present ASR systems.

A tiny amount of data ends up to being harmful in a speaker
adaptation for an ASR, which is a technique for additional
training of an AM with small amount of training data (called
adaptation data) of specific speaker. The speaker adaptation
can be done properly against various amount of adaptation
data by autonomous model complexity control (AMCC) [10]
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to take advantage of a tree structured Gaussian mixture model
(GMM) [11] as an AM. In the tree structured GMM, each leaf
node corresponds to an original Gaussian distribution. These
parent nodes correspond to the Gaussian distributions whose
parameters share these leaf nodes parameters. The parameters
of the root node corresponds to the common characteristic
of whole phonemes. The AMCC controls the amount of
parameters to be adapted by determining the depth of the tree
structure based on the amount of adaptation data.

Another example of reduced parameters in an AM is a
speech BMI. Herff et. al. applied the framework of an ASR
decoder to the decoding of the speech related brain activity
from the intracranial electrocorticogram (ECoG) [3]. In the
decoding, a statistical model corresponding to an AM is
trained from ECoG data. Due to the very limited amount of
data to train the model, they reduced the size of the basic
phoneme set by merging similar phonemes together. However,
the reduction of the basic phoneme set for the control of the
number of parameter is harmful for the decoding accuracy
because of the increase of homophone words. Conventional
works take account of not the increase of homophone words
but only the acoustic similarity.

Therefore, in this paper, a design of reduced phoneme set
based on a language model (LM) is proposed. To introduce a
LM for the reduction, pronunciation/word sequence confusion
rate (PWCR) is defined to estimate a degradation of an
accuracy of ASR with the reduced phoneme set.

In Section II, the related works including ASR and reduction
of phoneme set are described. In Section III, the PWCR
calculated by a LM is defined to evaluate the degradation
of ASR by reduced phoneme set, and the design of reduced
phoneme set based on LM is proposed. The experimental result
shows degradations of PWCR and ASR are suppressed by
the proposed approach in Section IV. Finally, conclusions and
future works are described in Section V.

II. RELATED WORKS

A. Overview of Automatic Speech Recognition System

An ASR is a technique for transforming an audio signal
recorded from a microphone to a text representation such as a
word or a sentence referring an AM and a LM. First, the input
audio signal is transformed to a sequence of feature vectors
X = x1,29,...,z7. A word or a sentence is decoded from
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these vectors. If the target is an individual word, the ASR is
called an isolated ASR, and if the target is a sentence, it is
called a continuous ASR.

The continuous ASR determines the most probable se-
quence of words W = wq,ws, ..., W, from a sequence of
unknown input speech feature vectors with reference to the
probability P(W|X). The probability can be transformed
using Bayes’ rule as follows:

o~

W = arg max P(W|X) = arg maxp(X|W)P(W) (1)
w w

where W = w1, wa, ..., w,, is a sequence of words, P(X|W)
is likelihood given by an AM, and P(W) is the probability
determined by a LM.

The AM contains statistical representation of distinct sound
such as phonemes. The most popular instance of the AM
is hidden Markov model (HMM) whose states are given as
Gaussian Mixture Model (GMM); GMM-HMM. Since 2010s,
HMM with deep neural networks (DNN); DNN-HMM has
seized the initiative because of a high accuracy of speech
recognition [12], [13], [14], [15], [16].

The LM gives a probability to a sequence of the words
W = wi,ws, ..., wy,. The most popular instance of the LM
is an n-gram model which is a sequence of n words with
an occurrence probability [17]. In an ASR of English, if two
candidates ‘fish eats plankton’ and ‘dish eats plankton’ get
highest likelihoods P(X|W) by an AM, LM selects ‘fish eats
plankton,” because the occurrence probability P(W) of the n-
gram corresponding to ‘fish eats plankton’ is higher than the
one corresponding to ‘dish eats plankton.” That is to say, the
most feasible sentence is recognized owing to a LM.

B. ASR for BMI

Recently, the framework of ASR has also been applied to in-
vasive BMI. This is a next-generation BMI, which decodes the
textual representation from the brain activity related to speech
to assist aphasic people for the more intuitive communication.

Speech decoding from the brain activity has been studied
so far [3], [4], [5], [6], [7]. In particular, Herff et al. applied
an English ASR decoder to transformation of brain activity
while speaking into the corresponding textual representation
[3]. They trained an ECoG phoneme model as an AM in ASR.
Due to the very limited amount of data to train the ECoG
phoneme model, they reduced the phoneme set of size from
40 to 23 by merging phonemes together. The reduction was
based on acoustic similarity of phonemes.

C. ASR for Minor Languages

The other examples of phoneme merging is the building of
ASR systems for minor languages. This faces on the problem
where a mass of training data cannot be collected. Some ap-
proaches merge phoneme sets of major languages to construct
target minor language phoneme set to increase training data
[18], [19], [20]. These approaches refer an acoustic similarity
of phonemes to merge phonemes.
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D. Problem of Phoneme Set Reduction

The reduction of phoneme set will increase homophones
(a word that sounds the same as another but is different in
spelling) in a word dictionary and will degrade the accuracy
of ASR. Taking an English case for example, if two phonemes
/d/ and /f/ are merged into a new phoneme, the words
‘dish’ and ‘fish’ cannot be determined from the pronunciation.
According to this aspect of the phoneme reduction, merging
phonemes should be performed carefully not to increase
confusing homophones whose occurrence probabilities of the
corresponding words in a LM are similar to each other. To
our knowledge, conventional approach for the phoneme set
reduction considers not the increase of homophones but only
the acoustic similarity.

III. PHONEME SET REDUCTION BASED ON LANGUAGE
MODEL

In this section, a proposed design of reduced phoneme set
based on a LM in continuous ASR is described. By using
a LM, we define the pronunciation/word sequence confusion
rate (PWCR), which estimates a degradation of an accuracy
of ASR by the reduced phoneme set. In the following, the
PWCR with the reduced phoneme set is first explained. Then,
a reduction algorithm based on an acoustic similarity as
conventional methods (Scenario 1), and the algorithm based
on frequency count of phonemes in a LM (Scenario 2) are
described. Finally, a reduction algorithm based on PWCR
(Scenario 3) is described.

A. Pronunciation/Word Sequence Confusion Rate

As mentioned in Section II, a continuous ASR with a LM
is more robust against phoneme set reduction by using word
context than isolated ASR. However, it is difficult to achieve
effective recognition with a smaller size of phoneme set even
with use of word context.

To measure the degradation by phoneme set reduction, a
PWCR is introduced in this paper. Let S be a basic phoneme
set. The goal is to find of exclusive subset denoted by .S,, in
S such that

N

S=1{J Sn 2)
n=1

SN S; = ¢, 3)

where N is the number of the subsets. The subset S,, can be
regarded as new phonemes in reduced phoneme set. The ASR
with reduced phoneme set uses word/pronunciation dictionary
described with new phonemes S,,n =1,2,..., V.

Using the phoneme sequence A = S;,,Si,---, Siy 1
where i,, € N,om = 0,1,...,M — 1, of reduced phoneme
set S = {S1,52,..., Sn}, the PWCR is defined as follows:

e=> Y (1 —p(wy|A))p(w) x 100, 4)
Ak

where wy is the k-th n-gram in a LM, p(wg|A) is the
probability where n-gram wy, is recognized correctly from the
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phoneme sequence A estimated from an AM, and p(wy) is
the occurrence probability where n-gram wj contains in LM.
p(wg|A) is calculated by using Bayes’ rule as follows:
p(Alwi)p(wr)
Plwg A) = ) (5)
() = & (Aol

where p(A|wy) is the probability of n-gram wy, given phoneme
sequence A. For example, if the phoneme sequence A corre-
sponds to three n-grams, each probability p(A|wy) equals to
1/3.

B. Scenario 1: Reduction Algorithm Based on Acoustic Simi-
larity

Mak and Barnard proposed a reduction algorithm based on
acoustic similarity, where Bhattacharyya distance was used for
merging phonemes [21]. The Bhattacharyya distance is the
similarity of two phoneme distributions in feature space. In
the study [21], the Bhattacharyya distance is calculated by
representing each phoneme as a Gaussian distribution. This
method does not consider a LM.

C. Scenario 2: Reduction Algorithm Based on Phoneme Fre-
quency

The first algorithm we propose is using a phoneme fre-
quency distribution obtained from a LM. The underlying idea
behind this method is that the merging among phonemes
whose frequencies are less than others makes a less impact
to ASR accuracy. The frequency of phoneme p; is defined
through occurrence probability of n-gram wy in a LM as:

F(pi) =Y Ny, (wi)p(wy), 6)
k

where N, (wy) is the number of phoneme p; in the phoneme
sequence A of n-gram wy,.

D. Scenario 3: Reduction Algorithm Based on PWCR

The reduction algorithms based on the acoustic similarity or
phoneme frequency do not take account of the increasing of a
value of PWCR. Here, we propose the second algorithm that
finds reduced phoneme sets with an approximately minimum
value of PWCR.

The number of ways to partition a full phoneme set of size
n into k non-empty groups is known as a Stirling number of
the second kind [22] denoted as:

k
S(n, k) = %Z(—l)ﬁ (f) (k=)™ ™
j=0

It increases in an exponential manner as n increases. For
example, if the n is 40 and the %k is 20, the Stirling number
5(40,20) becomes approximately 103°. Therefore, a brute-
force search is not a realistic solution.

Due to above reason, a greedy algorithm is employed to find
an approximate solution. In the first step, a problem to find a
reduced phoneme set of size n — 1 with smallest PWCR from
a full phoneme set of size n is solved. This problem is solved
by calculating PWCRs of all patterns of phoneme sets of size
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Algorithm 1 Find reduced phoneme sets with approximately
minimum PWCRs
Read a file ”BasicPhonemeSet.txt” to BufPhonemeSet
n < GetLength(BufPhonemeSet)
for k=n—1to 2 do
NewPhonemeSet < FindMinPWCRset(BufPhonemeSet)
Write NewPhonemeSet to a file “PhonemeSet_k.txt”
BufPhonemeSet <= NewPhonemeSet
end for

n—1. The number of PWCRs to be calculated is at most (g) =
n(n—1)/2 that can be computed in an polynomial time. In the
next step, a phoneme set of size n—2 with the smallest PWCR
from a phoneme set of size n — 1 found by the previous step.
The number of PWCRs to be calculated in this step is (") =
(n—1)(n—2)/2 that is less than the previous step. Repeating
this step until the phoneme set is reduced to the target size,
the reduced phoneme set with approximately minimum PWCR
can be found. The pseudocode of the algorithm is given in
Algorithm 1.

IV. EXPERIMENT

At first in this section, the experiment setup is described.
After that the reduced phoneme set obtained from the proposed
algorithm (Scenario 3) is shown to have smaller PWCR than
the other algorithms (Scenario 1, 2). Moreover, the reduced
phoneme set is shown to prevent the ASR degradation to ap-
ply Japanese large vocabulary continuous speech recognition
(LVCSR) decoder.

A. Experimental Setup

In the experiment, a corpus of spontaneous Japanese, CSJ
(a large-scale database of spontaneous Japanese) [23] was
used for training and evaluation of Japanese LVCSR. For
training and evaluation, Kaldi [24], a free open-source toolkit
for speech recognition research was used together with Kaldi-
CSJ recipe! [25]. Kaldi-CSJ recipe has training data set for
HMM with time-delay neural networks; TDNN-HMM [14],
[15] as an AM and an n-gram model as a LM, and evaluation
data set. Both data sets are lecture speech.

In accordance with the recipe, a TDNN-HMM was trained
with the 240-hour training data set. The size of the basic
phoneme set was 39 as shown in Table I. A LM was trained
using a part of 450k sentences in transcription data associated
with the 240-hour training data set. The 440k sentences were
used for a LM training and the remaining 10k sentences
were used for calculate a perplexity to evaluated the LM.
The trained LM was 3-gram and Kneser-Ney discounting was
applied as training options?. The vocabulary size was 72k. The
perplexity was 69.3. In this experiment, the LM was used to
calculate PWCR based on eq. (4).

Tt is in published Kaldi code at https:/github.com/kaldi-asr/kaldi/blob/
master/egs/csj/s5/run.sh.

2The detail of the option can be referred at https://github.com/kaldi-ast/
kaldi/blob/master/egs/csj/s5/local/csj_train_lms.sh.
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Fig. 1: A relationship between a size of reduced phoneme set and a PWCR.

TABLE I: A basic phoneme set defined in Kaldi-CSJ recipe.

Vowels (10) a, e, i,0,u
a:, e, i;, o;, w
Consonants (29) | b, ch, d, f, g, h, j, k,
m,n, N, p,q, 1, s, sh

t, ts, w, y, z, by, gy,
hy, ky, my, ny, py, ry

According to the recipe, standard evaluation sets labeled
as Evall, Eval2, and Eval3 in CSJ were used for evaluation.
The LVCSR decoding is executed with weighted finite state
transducer (WFST) [26].

B. The Comparison of Phoneme Sets by PWCR

The comparison of three reduced phoneme sets three sce-
narios (1, 2, and 3) by the value of PWCR. Figure 1 shows
the relationship between the size of reduced phoneme set and
the value of PWCR. The figure shows that as the size of the
phoneme set is reduced to 18 by Scenario 1, PWCR increases
over 20%. On the other hand, in Scenarios 2 and 3, when
the size of phoneme set reduced to 6 and 5, PWCRs exceed
20%. This result implies that the use of a LM is effective
for preventing the increase of the value of PWCR. Moreover,
focusing on the reduced phoneme sets with PWCR of under
10%, the minimum size of reduced phoneme set was 14 in
Scenario 2, while, 8 in Scenario 3. In this way, the proposed
scenario (Scenario 3) is effective in preventing the increase of
PWCR.

Figure 2 shows the behavior of the phoneme set reductions
based on Scenarios 1, 2, and 3. The horizontal axis indicates
phoneme symbols and the vertical axis shows the PWCR. It
can be observed in Fig. 2 that more phonemes are merged
with small value of PWCR in Scenario 3.

C. Speech Recognition Experiment

The reduced phoneme sets obtained from Scenarios 1, 2,
and 3 were applied to Japanese LVCSR. The operation for
applying reduced phoneme sets is just replacing phoneme
symbols in word/pronunciation dictionary used in Kaldi-CSJ
recipe and training TDNN-HMM based on the dictionary. 6
reduced phoneme sets of size 18 and size 10 from Scenarios
1, 2, and 3 were chosen to train AMs and evaluated the word
error rates (WERs). Table II lists WERs of each scenario for

TABLE II: WERSs [%] with reduced phoneme sets

Size Scenario Evall | Eval2 | Eval3 | AVG
39 Baseline 10.3 8.4 9.8 9.5
18 Scenario 1 15.3 12.4 15.0 14.2

Scenario 2 114 9.0 104 10.3
Scenario 3 10.7 8.7 10.0 9.8
10 Scenario 1 27.4 25.5 30.5 27.8
Scenario 2 14.0 11.6 139 13.2
Scenario 3 12.1 9.8 11.5 11.1

three standard evaluation sets of CSJ: Evall, Eval2, and Eval3.
In the table. AVG denotes the average WER of these evaluation
sets. It can be seen in Table II that the magnitude relationship
among PWCRs of each reduced phoneme sets are maintained
in terms of WERs. In comparison of reduced phoneme set of
size 18 and basic phoneme set of full size 39, the degradation
of WER with Scenario 3 was less than 1% for all evaluation
sets. Moreover, in case of reduced phoneme set of size 10
with Scenario 3, the degradation of WER was less than 2%
for all evaluation sets. These results suggest that the proposed
method is very effective for Japanese LVCSR.

V. CONCLUSION

A LM-based design of reduced phoneme set for an AM was
proposed. In the proposed approach, it is possible to reduce
phonemes preventing degradation, regarding PWCR calculated
from n-grams in a LM. In the experiment, the phoneme set
designed with proposed approach was applied to Japanese
large vocabulary speech recognition system. The word error
rate with full 39 phonemes set was 9.5% while the error rate
with the 10 phonemes set designed with the proposed approach
was 11.1%. The degradation was able to be prevented within
2%.

In the future works, effectiveness of the the proposed ap-
proach will be evaluated with small training data. Furthermore,
the proposed approach will be applied to speech BMI.
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