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Abstract—Real telephony speech recognition task is
challenging due to 1) diversified channel distortions and
2) limited access to the real data because of the data
privacy consideration. In this paper, assuming no real
telephony data are available, we employ diversified audio
codecs simulation based data augmentation method to
train telephony speech recognition system. Specifically,
we assume only wide-band 16 kHz data are available, and
we first down-sample the 16 kHz data to the 8 kHz data;
we then pass the down-sampled data through various
categories of audio codecs to simulate the real channel
distortion. As a result, we train our speech recognition
with such distorted data. To analyze the effectiveness
of different audio codec simulation methods, we classify
them into three main categories according to their distor-
tion severity, in terms of their spectrogram analysis. We
conduct experiments on various real telephony test sets to
show the effectiveness of the proposed data augmentation
method. The result shows that the real data is more close
with highly distorted simulation data, since the model
with highly distorted data reduce the Word-Error-Rate
7.28% - 12.78% compared to the baseline.

I. INTRODUCTION

Spontaneous speech recognition accuracy has been
remarkably improved in recent years thanks to the
advent of Deep Neural Network (DNN) modeling
techniques, and the usage of big training data [1]
[2]. However, telephony speech recognition is still
challenging. First of all, it is hard to obtain sufficient
domain specific real telephony data to train acoustic
models due to data privacy consideration. Secondly,
telephony speech itself is usually highly distorted due
to diversified channel codecs applied. Furthermore, if
the data itself is contaminated with other environ-
mental additive noise or reverberant noise, recognition
results over a domain specific telephony data will be
significantly degraded [3], [4], [5], [6], [7].

In this paper, assuming no real telephony Singapore
English data available, we employ various kinds of au-
dio codecs simulation based data augmentation method
as in [4], [8], [9], [10], [11], training telephony speech
recognition systems to recognize real telephony test
data. Specifically, to obtain 8 kHz telephony training
data, we down-sample 16 kHz data to 8 kHz data,
we then pass the down-sampled data through various
categories of audio codecs to simulate real channel
distortion.

To maximize the effectiveness of our codecs simu-
lation based data augmentation method, we collect 27
codecs in total, analyze their spectrograms, and then
classify the codec into three categories according to the
severity of the distortion displayed from sepctrograms
and Mean Opinion Score (MOS). MOS is a subjective
measure of sound quality from 1 to 5. After that,
we train a speech recognition system for each codecs
category, as well as one using the simulated data with
the mixed codecs.

Our work is motivated by a real project requirement,
where little real telephony training data is available
due to the data secret policy requirement. However,
we manage to get several real telephony test data sets
for evaluation. The main contribution of the paper lies
in the following aspects: 1) We collect extensive audio
codecs, which is up to 27 in total. To the best of our
knowledge, it is a comprehensive codec set compared
with the previous works in [3], [4], [8], [5], [10]. 2) We
use the completely mismatched wide-band data to train
8 kHz telephony speech recognition systems, of which
the effectiveness of the proposed method is evaluated
on the real telephony speech data. 3) We use up to four
real telephony test data sets obtained from different
sources. This ensures the effectiveness of the proposed
method.

The paper is organized as follows. Section II in-
troduces codec list we collected and shows our spec-
trogram analysis. Section III describes the details of
our work doing audio codec simulation. Section IV is
the description of the training and evaluation data we
employed. Section V presents the experimental setups
and the results. Finally, Section VI concludes the work.

A. Related works

GSM, G711, G723.1 and MPEG coders are inves-
tigated [4], [5]. The researches show that the GSM
full rate and MPEG (below 32kbit) degrade the speech
recognition performance significantly whereas G711
and G723.1 do not have such effect. They suggested
that we could keep the acoustic model trained on clean
speech and learn a linear transformation f between
“clean” and “degraded” signals. During the recognition
stage, the inverse transformation f-1 would be applied
to the degraded test signal to reduce mismatch between
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training and test. This study also pointed out that the
packet loss during transmission, the biggest source of
degradation, was not in their scope. It was presented
in [6], [8]. The influences caused by packet loss were
reduced by strategies to recover lost information, or the
relative weight of the language and acoustic model is
changed according to the packet loss rate.

The research in [10] proposed a scheme adding both
environmental noises and codecs condition to train the
speech system, and evaluated with speaker recognition.
The codecs was grouped by the codec type, and adding
as the additional to the noisy data by environment.

Jiřı́ Málek studied the effects of single codecs and
mixed of several codecs on the speech system per-
formance in [11]. Their study including experiments
with single codec, and mixed the different number of
codecs. The mixed codecs help mitigate the deterio-
rated performance due to training on off-domain data.

Inspired by above researches in speech and au-
dio codecs, we examine the comprehensive list of
the codecs using FFMPEG to simulate these codecs.
The list including codecs used in landline telephone
communication, satellite/radio transmission, and Voice
over IP. Using such simulated data, we train the
code-switch speech recognition systems [12], [13]
using SEAME corpus [14]. Different from almost
researches about codecs, we categorize the list of
codecs based on the MOS, and the level of distortion
in the spectrogram. We also evaluate the telephony
speech recognition with several real telephony data
sets. These evaluation sets are diversified in domains,
number of speakers, and the quality of the audio.
These real evaluation sets give us more detail and
valuable analysis of the model performance. Our data
augmentation work-flow is illustrated in Figure 1.

Fig. 1: Data augmentation scheme in our study

II. CODECS AND ANALYSIS

A. Codecs

The comprehensive list of 27 speech and audio
codecs (see in the Table I), are studied in this paper.

• Landline includes mu/A-law companding. It also
includes Adaptive-Differential PCM (ADPCM)
coding following the ITU G.726 standard, allow-
ing for 16, 32, 48 and 64 kbps rates.

• Cellular includes two major cellular telephony
codecs, namely the Global System for Mobile
Communications (GSM) and narrow-band and

wide-band Advance Multi-rate (AMR-NB and
AMR-WB) codecs. The GSM standard supports
four different but similar compression technolo-
gies to analyse and compress speech. These in-
clude full-rate, enhanced full-rate (EFR), adaptive
multi-rate (AMR), and half-rate.

– The full-rate allowing for 13 kbps rate uses
linear prediction coding with regular pulse
excitation.

– EFR (Enhanced Full Rate) uses ACELP (Al-
gebraic Code Excited Linear Prediction)

– HR (Half Rate) uses CELP-VSELP (Code
Excited Linear Prediction – Vector Sum Ex-
cited Linear Prediction)

– AMR-NB is a multi-rate speech codec using
Algebraic Code-Excited Linear Prediction
(ACELP) at 4.75-12.2 kbps. AMR-WB, fol-
lowing the ITU G.722.2 specification, is the
wide-band variant of AMR, coding speech
signals up to 7 kHz using bit-rates from 6.6
to 23.8 kbps.

• Satellite/Radio includes three codecs (ITU
G.728, Continuously Variable Slope Delta
(CVSD), and Codec2) that are used in satellite
and radio telecommunication systems.

• VoIP includes the ITU G.729, ITU, G726,
G723.1, G722 and G711 standards besides SILK
and SILK-WB, former Skype now open-source
codecs.

– ITU G.729a is a narrow-band low-
complexity codec based on the Code-Excited
variant of ACELP (CS-ACELP), operating
at 8 kbps.

– G726 is an improved version of G.721 and
G.723 (different from G.723.1).

– G.723.1 includes two variants. The bitrate of
the first variant is 6.4 kbit/s and the MOS is
3.9. The bitrate of the second variant is 5.3
kbit/s with MOS=3.7.

– The ITU G.722 is a wide-band audio codec
based on sub-band ADPCM allowing 48, 56
and 64 kbps rates. It is used for voice over
IP and radio broadcasters.

– G711 is Pulse code modulation (PCM) of
voice frequencies, that was introduced by
ITU in 1972 for use in digital telephony.
The codec has two variants: A-Law is being
used in Europe and in international telephone
links, u-Law is used in the U.S.A. and Japan.
G.711 uses a logarithmic compression. It
squeezes each 16-bit sample to 8 bits. The
MOS value is 4.2.

– The Opus (OGG) format is based on a com-
bination of the full-bandwidth CELT format
and the speech-oriented SILK format, both
heavily modified: CELT is based on the
MDCT that most music codecs use, using
CELP techniques in the frequency domain
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for better prediction, while SILK uses lin-
ear predictive coding (LPC) and an optional
Long-Term Prediction filter to model speech.

TABLE I: List of codecs used in our study

Codec information

Type Bitrates
(kBits/sec)

SampleRates
(kHz)

G726 ADPCM 16/24/32/40 8

GSM 06.10
(Full-rate)

GSM 6.70, 7.40,
7.95, 10.20,
12.20

8

GSM 06.20
(Half-rate)

GSM 4.75, 5.15,
5.90, 6.6

8

AMR-NB ADPCM 4.75, 5.90,
7.40, 10.20,
12.20

8

Opus / SILK
(VOIP)

OGG 4.5, 5.5, 7.7,
9.5, 12.5,
16.0, 32.0

8

G722 ADPCM 64 16

G723.1 ADPCM 6.3 8

B. Codecs analysis

In this study, we studied the group of codecs
based on the level of distortion to the spectrogram
and the MOS. We grouped into 4 categories: highly
distorted codecs, medium distorted codecs, minor dis-
torted codecs, and finally, the mixed set (which codec
in the comprehensive list will be randomly chosen and
applied to the clean audio file).

The example spectrogram of each group was illus-
trated in Figure 2. As you can observed in this Figure,
the harmonic and high frequencies in the (b) is much
more distorted than the spectrogram in the (c) and (d).
There are also more noises in higher frequencies.

The level of distortion in the spectrogram also
reflected in the quality of the audio sound. In the highly
distorted codecs group, the sound is very bad, creaky
like frame drop or clipping. In the real data, the bad
quality of sound may cause by the codec or the bad
transmission communication. In the medium distorted
codecs group, these noises are less and the sound is
better. And the sound in the minor distorted codecs
group is not much different with the clean audio.

III. AUDIO CODEC SIMULATION FOR SPEECH
RECOGNITION

We use FFMPEG to generate the simulated data.
Since the binary installation of the FFMPEG may
not support all the libraries, we recommend you
compile FFMPEG from source with libfdk-aac,
libopus, libmp3lame, libx264 and amr li-
braries enabled.

To build the Speech Recognition with simulated
data, we convert clean training data through the codec

simulation, as demonstrated below:
ffmpeg -i input.wav -c:a libopus \

-b:a 5.5k -ar 8000 output_550.ogg

ffmpeg -i output_550.ogg \

-ar 8000 output_550_ogg.wav

In practice, we generate simulated data in accor-
dance with kaldi-format, so we do not generate the
intermediate file, use pipe instead.

To train the augmented model with highly distorted
data, we compose the list of highly distorted codecs,
and select randomly from this list, to apply to clean
audio, to generate high distorted training data. Simi-
larly, we have medium distorted training data, minor
distorted data, mix distorted training data. In the mix
distorted training data, we select codec randomly from
the full list.

IV. DATA

A. Training data

We use about 100 hours of SEAME corpus to train
our speech recognizer. The SEAME corpus is a mi-
crophone based spontaneous conversational bilingual
speech corpus, of which most of the utterances contain
both English and Mandarin in Malaysia and Singapore
areas [14]. From the distribution of speakers, we can
see the SEAME corpus is generally biased with Man-
darin. Furthermore, they find Singaporean speakers
normally have more English words in their utterances,
while Malaysian speakers are more likely to converse
with utterances dominated by Mandarin.

B. Test data

To evaluate the proposed methods, we define eight
evaluation data sets. Two of them are extracted in
the same domain with training set, each are randomly
selected from about 10 gender balanced speakers.
However they are defined differently, and one is
dominated by Mandarin, named as Devman, and the
other is dominated by English, as Devsge. These two
proposed “biased” data sets [13], [15] would give
more clues to show the effectiveness of each proposed
method on each individual languages. We also generate
simulated data from these two dev sets with high
distorted codecs, namely Devman-noisy, and Devman-noisy
respectively.

Four evaluation sets are real telephony conversa-
tion. These evaluation set are out of domain with
the training set. All these real telephony evaluation
sets are dominated by English. The speakers in these
sets are diversified, from 16 to more than 400 speak-
ers, uttered by speakers mainly from Singapore and
Malaysia. The FreeTalk-2016, CallCenter, and Daily-
Conversation test sets are the real telephony data
collected in the call center and telecommunication
companies/organizations, while the FreeTalk-2019 is
the test set recorded by people in the data company.

More statistics about these evaluation sets are de-
scribed in Table II.
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(a) The spectrogram of the original audio file (b) The spectrogram of the highly distorted codec

(c) The spectrogram of the medium distorted codec (d) The spectrogram of the minor distorted codec

Fig. 2: Illustrate the spectrogram of audio files with different level of distortion

TABLE II: The statistics of data sets

Data
Type

Data Set #SPKS Length
(hrs)

Remark (8kHz)

Train SEAMEtrain 134 101.1 Clean

Dev Devsge 10 4 Clean

Devman 10 7.5 Clean

Devsge-noisy 10 4 Noisy simulated

Devman-noisy 10 7.5 Noisy simulated

Eval FreeTalk-2016 20 3.73 Real tel scene, Noisy

CallCenter 406 3.06 Real tel scene, Noisy

FreeTalk-2019 30 2.91 Tel scene, Noisy

Daily-
Conversation

16 0.38 Real tel scene, Noisy

V. EXPERIMENT SETUP

We report results on speech recognition task in En-
glish and Mandarin. Baseline model is trained on the
100 hour SEAME data set [15]. All the experiments
using 13-layers with 1024 hidden units TDNN-F [16]
run in Kaldi toolkit [17] . All data are sampled at
8kHz. Lexicon contain 39k English words and Chinese
characters. The tri-gram language model only use the
train data transcription to make graph in decoding. We
also train all ASR systems with standard 3-way speed
perturbation data augmentation [18] using factors of
0.9, 1.0 and 1.1.

A. Baseline models

The baseline model was trained with down-sampled
SEAME data (8kHz).

B. Augmented models

The augmented models were trained with aug-
mented SEAME data. In the first set of experiments,
we apply the single condition to the whole train-
ing data set. For example, in the highly-distorted
model, we select randomly codec from the highly-
distorted codecs, and apply to the clean data. In the
mixed model, we select codec from the full list of
codecs. As the results, we have 4 models in the first
set of experiments, namely Highly Distorted Codecs
(HighDC), Medium Distorted Codec (MediumDC),
Minor Distorted Codec (MinorDC) and finally, Mixed
Codecs (MixCodec). In the second set of experiments,
we pass the clean data through another data augmen-
tation process: speed perturbation based process, so
we have HighDC-SP (Highly Distorted Codecs and
Speed Perturbation), MediumDC-SP (Medium Dis-
torted Codecs and Speed Perturbation), MinorDC-SP
(Minor Distorted Codecs and Speed Perturbation), and
MixCodec-SP (Mixed Distorted Codecs and Speed
Perturbation) models.

In the end, we have 9 models (BASELINE model
and 8 augmented models).

C. Results

We reported the Word Error Rate (WER) with eight
evaluation sets, and results are summarized in 2 tables.
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Table III contains WER of the codecs augmented
model with real telephony data. The WER of the
highly distorted codec model (HighDC) is the lowest,
drop significantly, from 7.28% to 12.78% compared
to baseline model. This indicates that the highly dis-
torted simulation data is much more close to the real
telephony data. The WER of other augmented models
reduces consistently from highly to minor distorted
codecs group. The mixed codecs model is very close to
the HighDC, and is robust to all test sets in our study.
The second rows in the Table show the results with
augmented model, adding speed perturbation based
augmentation method (HighDC-SP, MediumDC-SP,
MinorDC-SP, MixCodec-SP). The speed perturbation
data augmentation method does a little help but in-
consistent with the real data (the improvements are
highlight in the bold text).

TABLE III: WER of models with codecs and real
telephony data

Models FreeTalk-2016 CallCenter Freetalk-

2019

Daily-

Conversation

BASELINE 64.78 62.59 65.61 69.02

HighDC 55.09 53.30 52.83 61.74

HighDC-SP 56.54 53.07 51.73 63.27

MediumDC 59.78 56.62 61.27 64.82

MediumDC-SP 56.72 53.75 55.31 63.98

MinorDC 59.48 57.15 59.38 65.37

MinorDC-SP 60.17 57.15 58.73 66.69

MixCodec 55.64 53.63 53.64 62.52

MixCodec-SP 56.55 52.33 53.11 63.57

Table IV contains WER of the codecs augmented
model with dev data sets. The BASELINE model
is the best for dev sets. However, the HighDC are
the best for codec simulated dev sets. The results
with simulated dev sets are consistently with the real
telephony, HighDC model improves for Devsge-noisy
8.02%, from 40.50% to 32.48% , for Devman-noisy
drop 8.4%, from 33.27% to 24.87% . This indicates
that codec based data augmentation method helps to
improve the speech recognition performance.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the data augmented
scheme that use codecs and speed perturbation based
method to build the telephony speech recognition sys-
tem. The model trained with proposed data augmented
scheme using highly distorted codecs gets better result
with the real telephony data, suggest codecs in this
group is more closer to the real world setting. The
model trained in a multi-condition (mixed codecs)
fashion yields comparable performance to specialized
model trained for highly distorted codecs group and
is robust to unseen test conditions. In the future, we

TABLE IV: WER of models with codecs and dev data

Models Devsge Devsge-noisy Devman Devman-noisy

BASELINE 26.79 40.50 19.89 33.27

HighDC 28.51 32.48 21.46 24.87

HighDC-SP 27.75 31.63 20.92 24.00

MediumDC 27.66 36.17 20.64 28.90

MediumDC-SP 27.03 35.13 20.18 28.13

MinorDC 27.16 37.81 20.51 30.53

MinorDC-SP 26.71 37.33 19.9 29.99

MixCodec 27.56 33.10 20.58 25.68

MixCodec-SP 27.11 32.2 20.05 24.97

would like to explore the data augmented scheme with
more environment noises, reverberation [19] to handle
various conditions in the real world as in [20], [21].
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