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Abstract— Sensor Pattern Noise (SPN) has proven to be an 

effective fingerprint for source camera identification, while its 
estimation accuracy heavily relies on denoising algorithm. In this 
paper, an effective source camera identification scheme based on 
Multi-Scale Expected Patch Log Likelihood (MSEPLL) 
denoising algorithm is proposed, firstly. With enhanced prior 
modeling across multiple scales, MSEPLL can accurately restore 
the original image. As a consequence, estimated SPN is less 
influenced by image content. Secondly, the source camera 
identification problem is formulated by hypothesis testing, where 
normalized correlation coefficient is adopted for SPN detection. 
Finally, the effectiveness of the proposed method is verified by 
abundant experiments in terms of identification accuracy as well 
as receiver operating characteristic. Performance improvement 
is more prominent for small image patches, which is more 
conducive to real forensics applications.  

I. INTRODUCTION 

With the rapid development of imaging devices such as 
mobile phones and digital cameras, digital images have 
gradually become a popular manner for people to record and 
share their daily lives. People can arbitrarily modify digital 
images on mobile phones or computer terminals, which bring 
hidden serious information security problems despite of 
convenience. It is often necessary to verify the authenticity 
and integrity of images through technological means in 
applications such as judicial forensics and news documentary. 
Therefore, digital forensics technology has received 
increasing attention. 

Given an image to be analyzed, the task for source camera 
identification is to identify the source camera device that shot 
it. Sensor pattern noise (SPN) is proposed in [1] for source 
camera identification for its uniqueness and stability for the 
first time. Lukas et al. adopted a wavelet domain adaptive 
denoising filter [2] to obtain denoised images, where the SPN 
is then constructed by averaging. The maximum likelihood 
estimation method (MLE) utilized in [3] is proven to bring 
performance improvement in SPN estimation accuracy. Li 
modeled the SPN estimation problem in wavelet domain and 
proposed six models for SPN enhancement by assigning 

different weights to SPNs in the wavelet domain [4]. It is 
revealed in [5] that the utilization of more advanced image 
denoising algorithm will lead to stable camera identification 
performance improvement. However, due to the imperfection 
of denoising methods in edge and texture regions, quality 
degradation is usually observed in SPN obtained from the 
above methods that there are certain scene content related 
structures left in estimated SPN. 

To suppress the effects of scene content, Kang et al. 
proposed an effective SPN predictor based on eight-neighbor 
context-adaptive interpolation algorithm [6]. The guided filter 
[7] was first adopted in [8] to identify the source camera, 
where the filter radius is adaptively determined according to 
local texture intensity. Ref [9] proposed a block weighted 
averaging module to further suppress the effects of scene 
content. A more flexible, pixel-wise confidence map is 
constructed in [10] with kernel principal component analysis 
based on local intensity and variance features, where higher 
weights are assigned to more reliable pixels. However, 
experimental results reported in these works are mainly based 
on large patch size settings, such as such as 512×512, 
1024×1024 and original image sizes. The SPN identification 
accuracy drops dramatically with the decease of patch size. 
Improving the quality of SPNs extracted from small-sized 
patches has great significance for SPN-based applications [11] 
[12]. 

In this paper, an effective source camera identification 
method based on multi-scale expected patch log likelihood 
(MSEPLL) denoising algorithm [13] is proposed. With the 
enhanced representation capability of MSEPLL, estimated 
SPN is less contaminated by image content, thus enables more 
accurate camera identification. The effectiveness of the 
proposed method is verified by experimental results 
conducted on six cameras selected from the Dresden database. 
Performance improvement is more prominent for small patch 
sizes, which favors the demanding source identification 
application. 

The remainder of this paper is organized as follows. Part 2 
introduces the MSEPLL denoising algorithm. The proposed 
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method is presented in Part 3 in detail. Part 4 discusses 
experimental results, while Part 5 concludes the paper. 

II. MSEPLL DENOISING ALGORITHM 

In this section, we briefly introduce the multi-scale 
expected patch Log likelihood (MSEPLL) denoising 
algorithm, as we rely on this method for accurate SPN 
estimation. 

A. Multi-Scale Expected Patch Log Likelihood 

Under an image restoration setting, assuming the clean 
image X is contaminated by the linear operator A and the 
additive Gaussian white noise N with the standard deviation 
σ0. Given the observed image Y = AX + N, the maximum a 
posterior (MAP) method for recovering X is 
 

( ) ( ) ( )
( )
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=

=
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where P(X) denotes a global prior of the image. The MSEPLL 
algorithm formulates the global prior by accumulating local 
patch ingredients: 
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where iR  and ˆ

iR  denotes the operator extracting the ith patch 

from the image and the decimated signal DjHX, Dj 
corresponds to the jth  down-sampling grid, H is a low-pass 
filter, w1 and w2 are the weights representing the importance 
of the different scales. Note that different local priors (P1 and 
P2) are adopted to model the two successive scales, 
respectively.  

By placing the MSEPLL prior into (1), we have: 
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λ =  , p is the patch size and S = DH. Using Half 

Quadratic Splitting [14] by introducing a set of auxiliary 
variables, the close form solution could be obtaiend as  
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B. Stein’s Unbiased Risk Estimate (SURE) and Scale 
Invariacne  

The Stein Unbiased Risk Estimator (SURE) is utilized to 
find the optimal weights for different scales in (4) in an image 
adaptive manner. Let h(Y, θ) denotes the denoising of the 
noisy image Y with parameter-vector θ, the optimal parameter 
can be obtained by minimization of the expected error  
 

( ) ( ) ( )2 2
02

, 2 , 2 , ,
T

MSE h Y h Y Y h Yθ θ σ θ= − + ∇ ⋅  (5) 
 

where h(Y, θ) represents the denoising of the noisy image Y 
and θ is a parameter-vector the algorithm depends on. 
Divergence calculation of ( ),h Y θ∇ ⋅ is estimated by numerical 

approximation: 
 

( ) ( ) ( )( )1
, , , ,Th Y B h Y B h Yθ ε θ θ

ε
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where ε  is a small constant. 

Furthermore, to obtain the desired scale invariance property, 
the upper-bound of the Kullback-Leibler divergence between 
the empirical distribution and local model is adopted to tune 
the filter H. Readers may refer to Ref [13] for detailed 
formula derivation when the Gaussian mixture model (GMM) 
model is employed for prior modeling of the original scale. 
For other scales, the filter is adjusted to keep the model 
unchanged. In this way, the MSEPLL algorithm manages to 
narrow the gap between global modeling while preserving the 
local treatment.  

III. SOURCE CAMERA IDENTIFICATION BASED ON MSEPLL 

In this section, we will first present the sensor pattern noise 
estimation method based on MSEPLL denoising algorithm, 
and then introduce the framework for source camera 
identification. 

A. SPN estimation based on MSEPLL  

The prominent denoising performance is expected to result 
in accurate sensor pattern noise estimation. Based on 
MSEPLL denoiser, the proposed SPN estimation method is 
consisted of three steps as follows: 

Step1. Residual image estimation with MSEPLL denoiser. 
To suppress the content of images, the residual image R is 
obtained by 
 

( ) ,R I F I= −  (7) 
 
where F(•) represents the denoising algorithm and in this case 
the MSEPLL. We followed the common setting in [3] that the 
standard deviation of noise 0 3σ =  while denoising. 

Step2. SPN estimation of single image with wiener filtering. 
Given an image, the SPN S is obtained by pixel-wise adaptive 
Wiener filtering is applied to residual image that: 
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The local variance ( )2ˆ ,i jσ can be estimated by the maximum 

likelihood estimation [2] as: 
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where M is the cardinality of in neighborhood NM. 

Step3. Camera SPN estimation by aggregation and SPN 
enhancement. Given a set of N images from the same camera 
instance c, the estimated SPN is obtained by averaging: 
 

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1741



1

1
.

N

k
k

S S
N =

=   (10) 

 
As revealed by systematic experimental evaluation, the simple 
averaging strategy leads to comparable performance to the 
MLE aggregation method.  

In order to suppress artifacts caused by in camera 
operations inside such as CFA interpolation, the final SPN for 
camera c is estimated as  
 

( )( ) ,cS WF ZM S=  (11) 
 
where ZM (•) represents the zero-mean operation of each row 
and column, and WF (•) denotes the 3×3 wiener filtering of in 
the Fourier domain. 

B. Source camera identification  

To determine if image under investigation is taken from a 
specific camera, we first compute correlation between noise 
residue and camera reference pattern, the SPN St is estimated 
by steps 1 and 2 as presented in Section 3.A for a given test 
image t. The normalized correlation coefficient (NCC) is 
adopted to measure the similarity between the test SPN St and 
reference SPN Sc of candidate cameras: 
 

( ) ( )
, .t c

c t c
t c

S S
corr S S

S S
ρ

⋅
= =

⋅
 (12) 

 
By assigning test image t to the candidate camera that 

yields the largest NCC values, we can evaluate the 
performance in terms of accuracy.  

Furthermore, the camera identification task can be 
formulated as a binary hypothesis problem that 
 

0

1

H :Image is taken by camera c

H : Image is not taken by camera c
. (13) 

 
Let ρ denotes NCC values when image t is taken from camera 
c and ρ  denotes those when t is not taken from camera c. If ρ 
is greater than the varying threshold, the null hypothesis is 
accepted, conversely, it is rejected. Based on comprehensive 
evaluation of NCC values, the overall receiver operating 
characteristic (ROC) curves can be studied. We shall see the 
detailed experimental results in both settings in the following 
section. 

IV. EXPERIMENTAL RESULTS 

A. Experimental setup 

To verify the effectiveness of the proposed algorithm, we 
followed the experimental settings of [9] that 1200 natural 
images (200 images randomly selected from six cameras) are 
selected from the Dresden image database [15]. Detailed 
database information is given in Table I.  

For each of the carmer, 25 randomly selected natural 
images are adopted for camera reference SPN estimation to 
mimic the actual forensic application. Experimental results 
are reported based on testing results from the remaining 175 

images. In both SPN estimation and identification, only 
patches form center area is studied as they are more likely 
suffer from forgery modifications according to human 
photographing habits. The patch sizes are limited to 64×64, 
128×128 and 256×256 throughout the paper. The proposed 
method is compared with the Basic method [1], the MLE 
method [3], the Model3 [4], and the GBWA method [9]. 
 

TABLE I DETAIL INFORMATION OF CAMERAS  

Camera 
No. 

Resolution Device 
No. of images 

in Dresden 
No.1 3264×2448 Canon_Ixus55_0 224 
No.2 3872×2592 Nikon_D200_1 380 
No.3 3648×2736 Olympus_mju_1050SW_4 202 
No.4 3648×2736 Panasonic_DMC-FZ50_1 415 
No.5 3072×2304 Samsung_L74wide_0 232 
No.6 3456×2592 Sony_DSC-H50_0 284 

 
Two scales are utilized in MSEPLL denoising algorithm, 

where the filter in the first scale is a standard non-extracted 
one. The second scale adopts an 11×11 Gaussian filter with 
standard deviation and down-sampling factor of 2. The weight 
for second scale is fixed to 0.33. Neighborhood size M is set 
to 9 in (9) for local variance estimation. 

B. Comparison of SPN Estimation Algorithms 

Accurate estimated SPN less influenced by scene content is 
the essence for success camera identification. In order to 
clearly examine the quality of the camera fingerprint, SPN 
extracted by different methods are visualized in Fig.1. 

 

(a) (b)  

(c) (d)  

Fig.1 Comparison of SPN estimation methods. (a) Original image. (b) 
Reference SPN from flat-field images[15]. (c) SPN estimated by 
GBWA[9]. (d) SPN estimated by proposed method. 

 
 For the original image patch in Fig.1(a), the reference SPN 

is estimated by MLE method from 50 flat-field images[15] 
shown in Fig.1 (b) demonstrate good randomness like white 
Gaussian noise, which is hard to obtain in real camera 
identification application. The SPN estimated by using guided 
image estimation and block weighted average (GBWA) 
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method [9] given in Fig.1(c) is heavily contaminated that 
many scene content related details can be clearly observed, 
especially in texture and edge regions due to the inferior 
denoising ability of the guided filter. By imposing a multi-
scale prior, method noise in SPN estimated from the proposed 
algorithm shown in Fig.1(d) has been significantly reduced. It 
is more similar to the ‘ground truth’ SPN in Fig.1(b) that is 
less influenced by scene content. 

C. Accuracy Comparison of dfferent Methods  

By counting the number of correctly judgments (True) and 
wrong judgments (False) for each test patch, the accuracy can 
be obtained as 
 

 .
True

Accuracy
True False

=
+

 (14) 

 
Experimental resutls for patch sizes of 64×64, 128×128 and 
256×256 are given in Table II, III and IV, where the proposed 
method is compared with the state-of-the-art  Basic method 
[1], the MLE method [3], the Model3 in [4], and the GBWA 
method [9]. Italic figures indicate the highest identification 
accuracy among the five methods. 

 
TABLE II  ACCURACY COMPARISON OF DIFFERENT METHODS FOR 64×64 PATCH SIZE 

 

Methods 
No.1 

(%) 

No.2 

(%) 

No.3 

(%) 

No.4 

(%) 

No.5 

(%) 

No.6 

(%) 

Average 

(%) 

Basic[1] 48.57  69.14  44.00  80.57  43.43  88.00 62.29 

MLE[3] 47.43  65.71  38.29  69.14  41.71  86.29 58.10 

Model3[4] 36.57  66.86  35.43  76.00  36.00  77.71 54.76 

GBWA[9] 41.14  83.43  48.00  78.29  41.14  89.14 63.52 

Proposed 52.00  98.86  47.43  96.57  52.57  98.29 74.29 

 
TABLE III  ACCURACY COMPARISON OF DIFFERENT METHODS FOR 128×128 PATCH SIZE 

 

Methods 
No.1 

(%) 

No.2 

(%) 

No.3 

(%) 

No.4 

(%) 

No.5 

(%) 

No.6 

(%) 

Average 

(%) 

Basic[1] 73.71  90.86  65.14  94.29  66.29  98.86  81.52  
MLE[3] 73.71  96.00  52.57  91.43  58.29  100  78.67  
Model3[4] 74.29  93.71  68.00  95.43  58.86  95.43  80.95  
GBWA[9] 78.29  98.86  76.57  96.57  71.43  100  86.95  
Proposed 88.00  99.43 68.57 98.29 85.14  100  89.91 
 

TABLE IV  ACCURACY COMPARISON OF DIFFERENT METHODS FOR 256×256 PATCH SIZE 
 

Methods 
No.1 

(%) 

No.2 

(%) 

No.3 

(%) 

No.4 

(%) 

No.5 

(%) 

No.6 

(%) 

Average 

(%) 

Basic[1] 98.29  100 82.86  98.29  91.43  100  95.14  
MLE[3] 93.71  100 80.00  98.86  86.86  100 93.24  
Model3[4] 93.71  100 82.86  96.57  90.86  100 94.00  
GBWA[9] 98.86  100 85.71  99.43  92.00  100 96.00  
Proposed 100 100 84.00 100 99.43 100 97.24 

 
We can observe consistent performance improvement over 

other methods for different patch sizes, besides the No. 3 
camera Olympus_mju_1050SW_4 whose identification 
accuracy is slightly lower than the GBWA [9] method. 
Further examination reveals that there are more saturated 

regions in the Olympus images in Dresden database, where 
the block weighting mechanism in the GBWA [9] method 
achieves slightly better performance. However, averaged 
accuracy improvement over the sub-optimal GBWA method 
on the whole database is 10.77%, 2.96% and 1.24%, 
respectively. Furthermore, accuracy gain is more obvious for 
small patch size of 64 × 64, which is a very appealing 
property of the proposed method. 

D. ROC Comparison of dfferent Methods  

In order to provide comprehensive evaluation of the 
statistical performance of the proposed algorithm, ROC 
curves are investigated. Based on ρ and ρ , number of true 
positive (TP), false positive (FP), true negative (TN) and false 
negative (FN) can be obtained at series of threshold values. 
Finally, the overall ROC curve is plotted of true positive rate 
(TPR) with respect to the false positive rate (FPR) defined as: 

(a)  

(b) TP
R

 

(c) TP
R

 

 
Fig. 2 Comparison of ROC curves for different patch sizes. 
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TP FN
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FPR

FP TN

=
+

=
+

. (15) 

 
As shown in Fig. 2 that the performance improvement over 

other methods is obvious for all patch sizes considered. In 
addition, Table V depicts the TPR comparison results at small 
FPR (10-3). Average TPR improvement over GBWA method 
is about 9.43% in comprehensive consideration of all patch 
sizes. 
 

TABLE V  TPR AT FPR = 10-3 FOR DIFFERENT CAMERA IDENTIFICATION METHOD. 

Patch Size Basic[1] MLE[3] Model3[4] GBWA[9] Proposed 

64×64 12.38  5.14  11.43 14.19  24.29 
128×128 36.67 34.95 33.62 47.71 52.67
256×256 48.10 72.19 42.10 72.00 85.24

 

V. CONCLUSIONS 

 In this paper, an effective sensor pattern noise estimation 
method is proposed based on MSEPLL denoising algorithm. 
With accurate prior modeling across different scales, denoised 
images are less influenced by image content, resulting more 
accurate SPN estimation. Effectiveness of the proposed 
method is verified with consistent accuracy increase in 
abundant source camera identification experiments. 
Performance improvement is more prominent for small patch 
sizes, which is an appealing property for future forensic 
applications [16] [17]. 
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