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Abstract—Dimensional emotion recognition (DER) from 
speech is used to track the dynamics of emotions for robots to 
naturally interact with humans. The DER system needs to obtain 
frame-level feature sequences by selecting the appropriate 
acoustic features and duration. Moreover, these sequences should 
reflect the dynamic characteristics of the utterance. Temporal 
modulation cues are good at capturing the dynamic 
characteristics for speech perception and understanding. In this 
paper, we propose a DER system using modulation spectral 
features (MSFs) and recurrent neural networks (RNNs). The 
MSFs are obtained from temporal modulation cues, which are 
produced from auditory front-ends by auditory filtering of speech 
signals and modulation filtering of the temporal envelope in a 
cascade manner. Then, the MSFs are fed into RNNs to capture the 
dynamic change of emotions from the sequences. Our experiments 
of predicting valence and arousal involving the RECOLA 
database demonstrated that the proposed system significantly 
outperforms the baseline systems, improving arousal 
predictions by 17% and valence predictions by 29.5%.  

I. INTRODUCTION 

Dimensional emotion describes more mixed emotions and 
captures the gradual emotion transitions in spontaneous or 
natural speech [1]. In human-robot interaction (HRI), robots 
need to capture the continuous changes of the speaker's 
emotions in order to interact naturally. Therefore, dimensional 
emotion can better meet the needs of HRI than discrete emotion 
can. Researchers have gradually shown an increasing interest 
in the representation and recognition of dimensional emotions 
[2]. Valence and arousal are the universal primitives in emotion 
dimensional space. Valence is related to the subjective 
appraisal and experience of positive or negative emotion. 
Arousal is associated with an intensity level, particularly strong 
or weak. Dimensional emotion recognition (DER) is mainly 
studied from two aspects. One is how to select the appropriate 
acoustic features and duration to extract frame-level feature 
sequences that can reflect the dynamic characteristics of the 
utterance. The other is how to capture the dynamic changes in 
emotional states from feature sequences.  

To extract and select emotional features, most existing DER 
systems extract acoustic features from sequential low-level 
descriptors (LLDs), such as F0 and Mel-frequency cepstral 

coefficients (MFCCs), to match the granularity of the 
annotation in each primitive. The values of each primitive are 
continuously labeled on short-time frames, such as 40ms in the 
RECOLA database [3]. MFCCs are the most commonly used 
feature in speech emotion, but they cannot reflect the dynamic 
characteristics of speech signals very well. Previous studies 
have indicated that temporal modulation cues are good at 
capturing the temporal dynamic cues for speech perception and 
understanding [4, 5]. Moreover, Dau et al. [6] implemented 
auditory perception models to simulate the results from 
different psychoacoustical tests. Additionally, some studies 
extracted temporal modulation cues on the basis of the auditory 
perception models for emotional speech analysis and showed 
that the cues are important for emotion recognition [7-10]. Wu 
et al. [9] proved that the modulation spectral features (MSFs) 
consistently exhibit considerably better discrimination power 
than MFCCs for categorical emotion recognition. In our 
previous studies, we proved modulation spectral 
representations can extract salient emotion features on spectral-
temporal representations for two-stage [10] and end-to-end 
categorical emotion recognition [11] using various 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs).  

Next, a regression model should be considered to capture the 
dynamic changes of emotional states from feature sequences in 
dimensional emotion recognition. Long Short-Term Memory 
(LSTM) recurrent networks can capture the temporal 
information to predict continuous dimensional values and 
explore many variations to improve performance. Some studies 
have used LSTM to predict dimensional emotions [12–14]. 
Wöllmer et al. [12] presented a fully automatic audiovisual 
recognition approach based on LSTM modeling of word-level 
audio and visual features. LSTM achieved a higher prediction 
accuracy than Support Vector Regression (SVR) due to its 
ability to model long-term time dependencies and decrease the 
time delay. Trigeorgis et al. [14] used a 1D convolutional 
operation directly on the discrete-time speech signals to predict 
dimensional emotions. In this paper, we propose a DER system 
to predict valence and arousal primitives using auditory-
inspired MSFs and LSTM. Figure 1 shows an overview of the 
proposed DER system. 
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 The modulation spectral representation is obtained from 
auditory front-ends including auditory filtering of speech 
signals and modulation filtering of the Hilbert temporal 
envelope in a cascade manner. Then the MSFs are extracted 
from modulation spectral representations by computing the 
frame-level centroid, skewness, kurtosis, flatness, tilt, etc. 
Eventually, LSTM is used to model the temporal-dynamics 
information for continuous dimensional emotion recognition. 
The experiments of predicting valence and arousal are 
conducted in the RECOLA database. We also investigate the 
effects of MSFs with different window lengths on predicting 
valence and arousal. 

The paper is organized as follows. Section 2 introduces the 
extraction of MSFs from auditory front-ends. Section 3 
presents the proposed regression model for DER. Section 4 
describes and discusses our experimental results. Finally, 
section 5 concludes the paper. 

II. AUDITORY-INSPIRED MODULATION SPECTRAL FEATURES 

In this section, we describe the auditory front-ends model to 
produce temporal modulation cues, and then different MSFs 
are extracted from the modulation spectral representation in the 
acoustic and modulation frequency domains.  

A. Temporal modulation cues from auditory front-ends 

In the auditory front-end, the emotional speech signal (ݐ)ݏ 
is first filtered by a bank of auditory filters to emulate the 
processing carried out by the cochlea.      

The output of the ith-channel signal is given by 	ݏ(݅, (ݐ = ,݅)ݐ݃	 (ݐ ∗ ,(ݐ)ݏ 1 ≤ ݅ ≤ ܰ,																																	(1)	
where ݃ݐ(݅,  is the impulse response of the ith channel, t is (ݐ
the sample number in the time domain, and N is the number of 
auditory filters. The center frequencies of these filters are 
proportional to their bandwidths, which in turn are 
characterized by the equivalent rectangular bandwidth (ERB) 
ܤܴܧ :[15] = ொೌೝ +  ,                                                     (2)ܤ

where ୧݂ is the center frequency (in Hz) of the ith critical-band 
filter, and ܳୣୟ୰ and ܤ୫୧୬ are constants set to 9.26449 and 24.7, 
respectively. The impulse response of a Gammatone filter is 
the product of a Gamma distribution and a sinusoidal ton  [16].  ݃ݐ(݅, (ݐ = ߨ2−)	ݔିଵ݁ݐܣ ܾܤܴܧ( ݂)ݐ) ߨ2)ݏܿ ݂ 	(3)				,(ݐ
where Aݐିଵexp	(−2π ܾERB( ୧݂)ݐ)  is the amplitude term 
represented by the Gamma distribution, A, n, ܽ݊݀	ܾ  are the 
amplitude, filter order, and bandwidth of the filter, respectively.  

This envelope is extracted using the Hilbert transform to 
calculate the instantaneous amplitude ܪ(݅,  of the ith channel (ݐ
signal. The ܪ(݅, ,݅)ݏ is computed from (ݐ  as the magnitude (ݐ
of the complex analytic signal ̂ݏ(݅, (ݐ = ,݅)ݏ	 (ݐ +jH{ݏ(݅, ,݅)ܪ ,where H{∙} denotes the Hilbert transform. Hence	,{(ݐ (ݐ = ,݅)ݏ̂| |(ݐ = ඥݏଶ(݅, (ݐ + ,݅)ݏ}ଶܪ 	(4)																		.{(ݐ

Furthermore, the modulation filterbank of M sub-channels is 
used for the kth sub-channel in the ith channel signal to extract 
the spectral-temporal representation signal ܴܵܯ(݅, ݇, ,(ݐ 1 ≤݇ ≤  Since the values of each primitive are continuously .ܯ
labeled on short-time frames, we extracted short-term MSFs as 
a frame to match values of each primitive. For each frame x, 
the modulation spectral representation is represented as MSR୶(i, k). 

Figure 2 shows the 2D spectrogram of modulation spectral 
representations with the first three channels (one low-pass filter 
and the first two band-pass filters) for the first 30 seconds of 
the utterance "P58" in the RECOLA database. The top panel is 
the spectrogram referred to the low-pass filter with cut-off 
frequency fୡ୳୲ = 2Hz	 in the modulation frequency channel. 
The middle and bottom panels are the spectrogram referred to 
the band-pass filter with frequencies of 4 and 8 Hz, respectively. 
The modulation spectral representations are composed of 288 
channels with 32 acoustic channels and 9 modulation channels 
in this study. The higher energy is mostly concentrated at the 
lower-modulation-frequency channel. This means that the 
lower modulation frequency plays a greater role in emotion 
recognition. However, high-modulation-frequency channels 
may contain information such as fundamental frequency and 
may help to estimate the values of valence and arousal 
primitives. 

B. Modulation spectral feature extraction 

We extracted 13 types of MSFs to determine whether these 
features can be used to identify the dimensional emotion. Two 
kinds of MSFs were calculated by analyzing the modulation 
spectral representation in the acoustic and modulation 
frequency domains. In the acoustic frequency domain, the first 
feature is the mean of the modulation spectrum MSR୶(i, k) in 
the kth modulation channel and represents the energy 
distribution of the modulation frequency, specifically:  			߮(݇) = ∑ ெௌோೣ(,)ಿసభ ே  .	                                             (5) 

The second feature is the modulation spectral centroid φୡୟ(k),	which indicates the center of the spectral balance 
across acoustic frequency bands. 		φୡୟ(k) is defined as: 
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Fig. 1   Overview of proposed DER system 
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							߮(݇) = ∑ ெௌோೣ(,)ಿసభ∑ ெௌோೣ(,)ಿసభ 	.																																																				 (6)	
The third feature is the modulation spectral spread φୱୟ(k), which	 represents	 the	 spread	 of the spectrum around its 

spectral centroid as the second moment.  φୱୟ(k) is defined as: 			߮௦(݇) = ∑ [ି	ఝೌ()]మெௌோೣ(,)ಿసభ ∑ ெௌோೣ(,)ಿసభ 	.																																				(7)	
The fourth feature is modulation spectral skewness φୱ୩ୟ(k), which	describes	 the	degree	of asymmetry of the spectrum 

around its spectral centroid as the third moment. 	φୱ୩ୟ(k) is 
defined as: 			߮௦(݇) = ∑ [ି	ఝೌ()]యெௌோೣ(,)ಿసభ ∑ ெௌோೣ(,)ಿసభ 	.																																		(8)	

The fifth feature is modulation spectral kurtosis 	φ୩୲ୟ(k) , which	describes	the	measurement	of the peakedness of the 
spectrum around its spectral centroid as the fourth moment. φ୩୲ୟ(k) is defined as: 				߮௧(݇) = ∑ [ି	ఝೌ()]రெௌோೣ(,)ಿసభ ∑ ெௌோೣ(,)ಿసభ 	.																																	(9)	

The sixth feature is modulation spectral flatness φୱୟ(k), 
which is computed from the ratio of the geometric mean of the 
arithmetic mean of the spectrum. φୱୟ(k) is defined as: 

					߮௦(݇) = ට∏ ெௌோೣ(,)ಿసభಿ 			ఝೌ() 	.																																										(10)	
The seventh feature is modulation spectral tilt φୱ୲ୟ(k) , which	represents	the	 linear	regression coefficient obtained 

by fitting a first-degree polynomial to the modulation spectrum 
in dB scale. φୱ୲ୟ(k) is defined as: 						߮௦௧(݇) = ∑ ெௌோೣ(,)ಿసభ∑ ெௌோೣ(,)ಿసభ 	.																																														(11)	

On the modulation frequency domain, the six other features 
are calculated in the ith acoustic channel. For example, the 
spectral centroid ߮(݅) in the acoustic frequency domain is 
computed as follows: 								߮(݅) = ∑ ெௌோೣ(,)ಾೖసభ∑ ெௌோೣ(,)ಾೖసభ .																																														(12)	

Then we obtain the mean of energy, spectral spread, spectral 
skewness, spectral kurtosis, and spectral tilt using similar 
formula on the modulation frequency domain. Lastly, we 
obtain 63 acoustic-frequency-domain features and 192 
modulation-frequency-domain features, thus totaling 255 
features.  

III. EMOTION RECOGNITION MODELS 

In this section, we introduce the emotion recognition models 
for DER. The temporal RNN model and the multi-task learning 
framework are described below. 	
A. RNN model 

LSTM architecture is the state-of-art model for sequence 
analysis since it can exploit long-term dependencies in the 
sequences by using memory cells to store information. Given 
an input feature sequence x = ,ଵݔ} … , ,{்ݔ  LSTM computes 
the hidden vector sequence h = {ℎଵ, … , ℎ்} and output vector 
sequence y = ,ଵݕ} … ,  by iterating the following equations	{்ݕ
from t = 1 to T: 	(ℎ௧, ܿ௧) = ,௧ݔ)ܪ ℎ௧ିଵ, ܿ௧ିଵ),																																														(13)			ݕ௧ = ௬ݓ ∗ ℎ௧ + ܾ௬,																																																													(14)	
where the H  term is the LSTM layer function, c  is the cell 
activation vector with the same size as the hidden vector h. The w and b terms denote the weight matrices and bias vectors, 
respectively. The LSTM layer is composed of one LSTM cell, 
a dropoutwrapper with keep probability of 0.5, and peephole 
connections. 

B. Performance measure and loss function 

To measure the weight of each feature, a concordance 
correlation coefficient (CCC) measure between the prediction 
values of emotion dimensions and the gold standard values is 
used. ρୡ  is a measure of how well the prediction values of 
emotion dimensions (Y) compares to a "gold standard" 
measurement (X). 				ߩ = ଶఘఙೣఙఙమೣାఙమା(ఓೣିఓ)మ	,																																																						(15)	
where ρ is the Pearson correlation coefficient (PCC) between 
the two time series prediction and gold-standard, σ୶ଶ and σ୷ଶ is 

 

Fig.2 2D spectrogram of modulation spectral representations	
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the variance of each time series, μ୶	and μ୷ are the mean values 
of each. Therefore, predictions that are well correlated with the 
gold standard but shifted in value are penalized in proportion 
to the deviation. This means that the CCC measure combines 
the PCC with the square difference between the mean of the 
two compared time series. Hence, we utilize a loss function (ܮ) 
on the basis of the concordance correlation coefficient.	ܮ  is 
defined as: 						ܮ = 	 ଶିఘೌ ିఘೡଶ ,	                                                        (16) 

where ρ  and ρ௩  are the CCC of the arousal and valence, 
respectively. 

C. Multitask learning 

As the arousal and valence are highly correlated with each 
other, we propose multi-task learning to predict the arousal and 
valence simultaneously in the DER system. We train a LSTM 
regression model with two outputs and two CCC losses at the 
same time. 

IV. EXPERIMENTAL RESULTS 

A. Database Description 

The RECOLA database is a multi-modal corpus of remote 
collaborative and affective interaction in French. The version 
used in this study contains 23 conversations, each lasting 5 
minutes. To ensure speaker-independence in the experiments, 
the corpus was split into three partitions, by balancing the 
gender and the age of the subjects: training (9 subjects), 
validation (9 subjects), and testing (5 subjects). Annotation was 
performed for arousal and valence separately. Affective 
behavior of the participants was evaluated by six different 
annotators and averaged over all annotator by considering 
inter- annotator agreement to provide a gold standard. 

B. Experimental Setup 

For preprocessing, we normalize MSFs on the feature level 
to reduce the difference between different features. Due to the 
high time-resolution of the modulation spectral representations, 
the number of samples for the time domain has to be reduced. 
The time-resolution is reduced simply by downsampling 
modulation spectral representations with an 800-Hz rate.  

The structure of LSTM contains an input layer with 255-
dimensional input features, 1 hidden layer with 256 hidden 

units, and then following a full-connected layer with 128 
outputs, an output layer with 2 nodes corresponding to the 
predicted valence and arousal primitives. Additionally, for all 
random weight initializations, we choose L2-regularliser 
initialization. To counter overfitting in training our regression 
model, we use a dropout strategy before the fully-connected 
layer with a dropout rate of 0.5. We trained our model 
throughout all experiments with the Adam optimizer with a 
fixed learning rate of 1e-4. The mini-batch size utilized was 10 
with a sequence length of 1500 frames (60 s) when training, 
and the model is tested on the entire records without 
segmentation. We trained the regression model with a 
maximum 200 epochs and stopped training when the 
predictions did not improve for either dimension on the 
validation set for 10 epochs. 

C. Prediction of MSFs under different window lengths 

We investigate the effects of different window lengths on 
predicting valence and arousal. Different window lengths 
ranging from 0.2-6s were explored and 255 MSFs are 
computed per window. Figure 3 depicts the obtained CCC for 
arousal and valence. Results show that the best performance for 
arousal is achieved with a 200-ms window, resulting in a CCC 
of 0.724. For valence, the best performance for arousal is 
achieved with a 500-ms window, resulting in a CCC of 0.37. 
This means that the MSFs with a 200-ms window contain 
temporal dynamic cues. Hence, we select the window length of 
200 ms to extract features for emotion recognition in this study.  

D. Comparison with different methods 

In this work, we first implement a baseline model with 
MFCCs and a SVR model. To extract acoustic features from 
the speech recordings, we used the openSMILE toolkit [17] to 
extract 39 MFCCs (12 MFCC + energy, 12 delta MFCC + 
energy and 12 double delta MFCC + energy) with a frame 
window size of 25 ms at a step of 10 ms. We stack four frames 
to form a 40-ms feature vector, thus totaling 156 MFCC 
features. Then, a SVR predictor is used to recognize emotion.  

In addition, we implement our temporal model and multi-
task strategy with the tensorflow deep learning framework. We 
compare our approach with other emotion recognition 
approaches.  

Results obtained for each method are shown in Table 1. The 
highest performance was achieved by applying MSFs and 
LSTM. Arousal predictions improved by 17%, going from 
0.619 to 0.724, while valence improved 29.5%, going from 
0.278 to 0.36. Yang and Hirschberg [18] obtained a CCC with 

Table 1. Performance comparison (in term of ρୡ ) under different 
features and predictors 

  Arousal Valence 
Predictor Features Dev Test Dev Test 
SVR MFCC .657 .619 .320 .278 
LSTM MFCC .696 .674 .346 .294 
SVR MSFs .713 .683 .342 .287 
LSTM MSFs .751 .724 .367 .36 

Fig. 3 Results comparing the prediction of MSFs under different 
windows length 
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0.692 and 0.423 using the same dataset after training deep 
neural networks on waveforms and spectrograms. In contrast, 
our system obtained a better CCC in arousal prediction. 

E. Discussion 

In our preliminary experiments, we further found that 
bidirectional LSTM and multi-layer LSTM do not improve the 
performance. Similar to the results of Trigeorgis et al. [14], no 
feature delay is required to compensate for the cognition delay 
of the annotators for MSFs since the LSTM networks can 
capture the temporal information and long-term time 
dependencies. However, the centering by finding the ground 
truth’s and the prediction’s biases is useful to improve the 
performance. 

V. CONCLUSIONS 

In this study, we proposed a dimensional emotion 
recognition system to predict valence and arousal primitives 
using 255-dimension MSFs and LSTM recurrent networks. We 
showed that MSFs can effectively extract frame-level 
emotional features from continuous speech signals and LSTM 
can capture the dynamic changes of emotional states from 
feature sequences. Future work will include robustly analyzing 
the proposed system in a noisy environment and further 
investigating the 3D modulation spectral representations 
(acoustic frequency components, modulation frequency 
components, and temporal features) for emotion recognition. 
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