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Abstract—Deep neural networks (DNNs) have produced state-
of-the-art performance in automatic speech recognition (ASR).
This success is often associated with a large DNN structure
with millions or even billions of parameters. Such large-scale
networks take large disk space and require huge computational
resources at run-time, therefore not suitable for applications
in mobile or wearable devices. In this paper, we investigate a
compression approach for DNNs based on Tensor-Train (TT)
decomposition and apply it to the ASR task. Our results on
the TIMIT database reveals that the compressed networks can
maintain the performance of the original full-connected network,
while greatly reducing the number of parameters. In particular,
we found that the rate of model size decreasing is much larger
than the rate of WER (word error rate) increasing, which means
that the performance loss caused by the TT-based compression
can be well compensated by the model size reduction. Moreover,
how many layers and which layer can be substituted by TT is
application dependent and should be carefully designed according
to the application scenario.

I. INTRODUCTION

Following years of research, deep learning has achieved

state-of-the-art results on many sequential data modeling tasks,

such as speech recognition [1, 2, 3, 4], machine translation [5],

image classification [6][7] and object detection [8]. This bril-

liant success should be certainly attributed to the continuous

effort of researchers on the design of various deep learning

components, including network structures, training strategies

and inference algorithms, but should be also attributed to the

rapid growth in the amount of data available for training,

and the great improvements in the computational power of

hardware devices. The huge amount of data and computational

power enables training large-sale deep neural network (DNN)

that involve millions even billions of parameters [9].

The large-scale networks trained with large-scale data have

been demonstrated to be very powerful. However, inferring

with such a large structure requires intensive computational

power and a large size of memory, which is only feasible

for professional servers. If we want to deploy the model to

mobile and wearable devices, the DNN structure should be

significantly compressed. The necessity of this compression

is mostly notable for automatic speech recognition (ASR)

applications, as the pervasive deployment of wearable and IoT

devices will require pervasive device-end ASR service, and the

resources of these devices are very limited.

A prominent approach to DNN compression is matrix

approximation. For example, the SVD algorithm can ap-

proximate a large matrix by a product of two low-rank

matrices [10]. This approach has been successfully applied

to compress pre-trained models. A related approach is to

design structural matrices [11], where the parameters are

shared according to pre-defined structural constraint. With this

constraint, the free parameters are limited although the size of

the matrices could be large. All these methods offer reasonable

compression rate, but it still can not meet the requirement

for large-scale DNN compression. Pruning method [12] is

another idea for compress DNN networks, which cuts off those

redundant and unimportant connections of the network and

leave only the salient and essential structure.

Recently, the Tensor-Train (TT) decomposition [13] has

attracted much attention. TT decomposition follows the same

idea of matrix approximation and structural constraint, but the

decomposition is by high-dimensional tensor product so the

compression rate is much higher. In this paper, we conduct an

empirical study of TT decomposition in speech recognition

tasks. Our goal is train a very compact DNN acoustic model

that can achieve comparable performance as a large-scale

DNN. We found that TT decomposition works pretty well,

and the performance loss imposed by this compression can

by reasonably compensated for by the high compression rate,

i.e., the decreasing in performance (in terms of WER) is much

lower than the decreasing in the model size.

II. RELATED WORKS

To meet the requirement of both state-of-the-art perfor-

mance and efficient computation power and memory consump-

tion, there is a trade-off between high-accuracy models and

fast efficient models. A number of researchers have reported

various methods aimed at minimizing the accuracy loss while

maximizing the inference efficiency.

Courbariaux et al. [14] proposed binary-weight neural net,

which significantly reduces the memory footprint and compu-

tational cost. The same ideas was also raised by Li et al. [15].

Hinton et al. [16] proposed a distillation approach that trains a
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small network using soft targets generated by a large network,

which can be regarded as a compression approach. Some

researchers also tried to represent dense weight matrices with

constrained structures. For example, Denil et al.[17] proposed

low-rank matrix decomposition that replaces the original full-

rank weight matrix with the product of two low-rank matrices.

Matrix decomposition is two-dimensional. Recently, this

approach has been extended to tensor decomposition, which

replaces the original full-rank weight matrix with the product

of series of high-dimensional tensors. Due to the high dimen-

sionality, the structure constraint in tensor decomposition is

much richer than matrix decomposition. Among various tensor

decomposition methods (e.g., CP decomposition and Tucker-

decomposition), TT decomposition is the most successful

due to its simplicity and flexibility [13, 18]. Recently, TT

decomposition has been applied to many deep learning tasks.

For example, Novikov et al. [19] used the TT format to

represent the weight matrices in the fully connected layer

inside a CNN model. Tjandra et al. [18] applied TT de-

composition to compress the weight matrices inside RNN

models. TT decomposition has also been applied to represent

the embedding layer, a key ingredient in modern NLP [20].

Compared to other tensor decomposition methods, such as

CP decomposition and Tucker-decomposition, TT decompo-

sition tends to offer better performances [21]. For instance,

the TT decomposition achieved the best performance when

modeling polyphonic music [21]. In speech recognition, Mori

et al. [22] applied TT decomposition on the end-to-end ASR

framework. In our work, we will decompose fully-connected

layers using TT on a simple phoneme recognition task, and

investigate how to improve the performance of TT in such a

classical configuration.

III. TENSOR TRAIN DECOMPOSITION

In this section, we discuss the details of our proposed

approach to compress DNN using the TT decomposition. The

basic idea is to replace the dense matrix of a full-connected

layer with a format of tensor train. This format is called TT

format, and the layer in the TT format is called a TT layer.

A. Tensor-train (TT) format

We represent one-dimensional arrays as vectors, two-

dimensional arrays as matrices, high-dimensional arrays as

tensors. Bold lower case letters (e. g. b) denote vectors;

ordinary lower case letters (e. g. b(i) = bi) denotes vector

elements; bold upper case letters (e. g. W ) denote matrices;

ordinary upper case letters (e. g. W (i, j)) denote matrix ele-

ments; calligraphic bold upper case letters (e. g. W) denote

for tensors and ordinary calligraphic upper case letters (e. g.

W(i) = W(i1, . . . , id)) denote tensor elements, where d is the

dimensionality of the tensor W . We will call arrays explicit
to highlight cases when they are stored explicitly, i. e. by

enumeration of all the elements.

A d-dimensional array (tensor) W is said to be represented

in the TT-format if for each dimension k = 1, . . . , d and

for each possible value of the k-th dimension index jk =

1, . . . , nk there exists a matrix Gk[jk] such that all the

elements of W can be computed as the following matrix

product:

W(j1, . . . , jd−1, jd) = G1[j1]G2[j2] · · ·Gd[jd−1]Gd[jd],
(1)

where matrices Gk[jk] are related to the same dimension k,

and they are restricted to be of the same size rk−1 × rk. The

values r0 and rd are set to 1, so the final matrix product result

is a scalar. We refer to the representation of a tensor in the

TT-format as the TT-decomposition, a sequence {rk}dk=0 is

referred to as the TT-ranks of the TT-representation of W , its

maximum – as the maximal TT-rank of the TT-representation

of W : r = maxk=0,...,d rk. A collection of the matrices

(Gk[jk])
nk

jk=1 corresponding to the same dimension are called

the TT-cores.

We use the symbols Gk[jk](ck−1, ck) to denote the element

of the matrix Gk[jk] in the position (ck−1, ck), where ck−1 =
1, . . . , rk−1, ck = 1, . . . , rk. Equation (1) can be equivalently

rewritten as the sum of the products of the elements of the

cores:

W(j1, . . . , jd) =
∑

c0,...,cd

G1[j1](c0, c1) . . . Gd[jd](cd−1, cd). (2)

If a tensor W is stored in the TT-format, in other words,

using the TT-cores Gk[jk] to represent the original tensor, the

parameters that are truly stored in the memory will be reduced

from
∏d

k=1 nk to
∑d

k=1 nk rk−1 rk . It can be seen that the

TT-format is very efficient in terms of memory footprint if the

ranks are small.

B. Compressing DNN with TT-format

In this section, we introduce the TT-layer that can be used

to compose DNNs. In short, the TT-layer is a fully-connected

layer with the weight matrix stored in the TT-format. A TT-

DNN is a DNN that consists of one or more TT-layers.

More specifically, we replace a full-connected layer with a

TT layer. A fully-connected layers involves a linear transfor-

mation on an N -dimensional input vector x:

y = Wx+ b, (3)

where W ∈ R
M×N is the weight matrix and b ∈ R

M is

the bias vector. Usually the weight matrix W contains a huge

number of parameters, most of which are redundant and so

can be compressed by TT decomposition and saved in the

TT format, converting to a TT layer. In details, represent

the transformation as a TT, and reshape the input vector

x and output vector y to a d-dimensional tensor X and

a d-dimensional tensor Y . The linear transformation (3) is

expressed in the tensor form:

Y(i1, . . . , id) =
∑

j1,...,jd

G1[i1, j1] . . .Gd[id, jd]X (j1, . . . , jd)

+ B(i1, . . . , id).
(4)
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Based on this tensor representation, conventional training

strategies based on back-propagation can be employed to op-

timize the parameters Gk[jk], and inference can be conducted

simply by tensor production.

IV. EXPERIMENTS

In this section, we present the data and the model ar-

chitecture adopted in our experiments to evaluate different

configurations of TT-DNNs.

A. Configurations

Our experiments were performed with the TIMIT corpus.

The database contains a total of 6300 sentences, 10 sentences

spoken by each of 630 speakers from 8 major dialect regions

of the United States. The associated phoneme recognition task

was chosen in our experiments as the benchmark, where the

data configuration follows the Kaldi s5 recipe [23]).

The PyTorch-Kaldi [24] toolbox was used to conduct the

experiments, where PyTorch is responsible for NN training,

while Kaldi is responsible for data processing and decoding.

The architecture is shown in Fig. 1.
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Fig. 1. An overview of the PyTorch-Kaldi architecture [24].

The baseline DNN model is a multi-layer perceptron (MLP)

with 4 full-connected hidden layers. The size of the input

layer is 429, corresponding to the dimensionality of the input

feature, and the size of the output layer is 1952, corresponding

to the pdfs of the speech recognition system. Each hidden layer

contains 1024 units. All these layers can be formulated into a

tensor form so that the TT decomposition can be employed.

The details of the tensor format and the TT-rank of each layer

are shown as follows.

1) Regular DNN

• Input size: 429

• Hidden-1 size : 1024

• Hidden-2 size : 1024

• Hidden-3 size : 1024

• Hidden-4 size : 1024

• output size :1952

2) Tensor-form DNN

• Tensor input shape : 1× 3× 11× 13
• Tensor hidden shape : 4× 4× 8× 8
• Tensor output shape : 2× 2× 8× 61

3) TT-rank

• 1× 3× 3× 3× 1

B. Single TT layer
The first experiment is to apply the TT decomposition to a

particular layer, and compare the impact of the TT substitution

on different layers, in terms of the word error rate (WER) and

the model size.
We denote the number of layers that can be TT substituted

as n, which is 5 in our experiments (the tensors that derive

the hidden and output units), and the number of layers that

has been TT substituted as m. In this experiment, only m = 1
is considered. To make the notation more clear, ‘FC’ is used

to denote a full-connected layer, and ‘TT’ is used to denote

a TT decomposed layer. An architecture ‘TT-FC-FC-FC-FC’

represents a TT-DNN whose layers are all full-connected,

except the first hidden layer.

TABLE I
COMPARISON FOR DIFFERENT DNN/TT-DNN CONFIGURATIONS (m = 1)

Architecture Model size WER
FC-FC-FC-FC-FC 21.4M 18.2%
TT-FC-FC-FC-FC 19.7M 18.2%
FC-TT-FC-FC-FC 17.4M (17894KB) 19.1%
FC-FC-TT-FC-FC 17.4M (17894KB) 18.7%
FC-FC-FC-TT-FC 17.4M (17894KB) 18.6%
FC-FC-FC-FC-TT 13.8M 19.0%

FC-FC-FC-FC 17.4M (17860KB) 37.5%

Table I shows the performance of different architectures.

The 1st row shows the baseline, and the 2nd to 6th rows show

the performance of TT-DNNs where the TT decomposition

is applied to different layers. The 7th row reports the perfor-

mance of another full-connected DNN model which contains

three hidden layers (rather than four as in the baseline) and

involves the same amount of parameters as the TT-DNNs.
We firstly observe that the TT decomposition can signifi-

cantly reduce the size of a layer, leading to a drop of 1/5 in

the number of model parameters. This parameter compression,

however, does not lead to much significant performance reduc-

tion. The absolute WER increasing is controlled within 1%. In

particular, when the TT decomposition is applied to the first

hidden layer, there is no performance loss. Applying TT onto

the second hidden layer and the output layer leads to the most

significant performance reduction, though more investigation

is required to analyze which layer is more amiable to TT

decomposition.
Finally, when compared to the DNN model with 3 full-

connected hidden layers (7th row), the TT-DNN models per-

form much better although the model sizes are almost the
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same. This confirms that the TT format is an elegant structure

that can learn important information with very limited amount

of parameters.

C. Two TT layers

TABLE II
COMPARISON FOR DIFFERENT DNN/TT-DNN CONFIGURATIONS (m = 2)

Architecture Model size WER
FC-FC-FC-FC-FC 21.4M 18.2%
TT-TT-FC-FC-FC 15.8M 18.8%
TT-FC-TT-FC-FC 15.8M 19.2%
TT-FC-FC-TT-FC 15.8M 19.0%
TT-FC-FC-FC-TT 12.1M 19.5%
FC-TT-TT-FC-FC 13.4M 20.1%
FC-TT-FC-TT-FC 13.4M 19.7%
FC-TT-FC-FC-TT 9.85M 21.1%
FC-FC-TT-TT-FC 13.4M 19.1%
FC-FC-TT-FC-TT 9.85M 20.1%
FC-FC-FC-TT-TT 9.85M 20.7%

FC-FC-FC 13.4M 40.4%

The results of TT-DNNs with 2 TT layers are shown in

Table II. It can be seen that with the additional TT layer, the

model size is further compressed, with noticeable but limited

performance reduction. When compared with a DNN model

with 2 full-connected hidden layers (the last row), the TT-

DNNs with 2 TT layers perform much better although their

sizes are the similar. All these observations are consistent with

the results in Table I.

D. Mutiple TT layers

TABLE III
COMPARISON OF DIFFERENT DNN/TT-DNN CONFIGURATIONS

(m = 3, 4, 5)

Architecture Model size WER
FC-FC-FC-FC-FC 21.4M 18.2%
FC-TT-TT-TT-FC 9.48M 21.1%
TT-TT-TT-TT-FC 7.81M 23.1%
TT-TT-TT-TT-TT 0.2M 52.2 %

FC-FC 9.38M 46.1%

The results with more TT layers are shown in Table III. It

can be seen that with more hidden layers formulated by TT,

the model size keeps decreased, and the performance keeps

degraded, but still under control. However, it seems converting

the output layer to be TT is risky: although the model size

can be significantly reduced to 200k bytes, the performance is

dropped to an unacceptable level. This indicates the TT format

is compact but less flexible, i.e., the functional space it can

cover is limited. Therefore, TT layers should collaborate with

some more general functions (e.g., full-connected layers) to

achieve the learning goal.

Plot all the experimental results on a two-dimensional space

where the x-axis is the compression ratio and the y-axis is the

WER, and then conduct a polynomial regression. The results

are shown in Fig. 2. It can be seen that when the compression

ratio is below 60%, the performance will be not impacted

much and the WER will keep stable. However, when the model

is compressed more aggressively, the WER is significantly

increased and the model becomes unacceptable. In practice,

the trade-off between compression ratio and performance loss

needs to carefully addressed.
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Fig. 2. Model compressing ratio versus WER with TT-DNNs. The function
in the legend is fitted using the standard least-square method.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated a model compression approach

for speech recognition, by using the tensor train (TT) format.

This format introduces complex relationships among parame-

ters via tensor multiplication, leading to structural priors that

make it possible to encode complex patterns with limited

parameters, hence a compact model.

The experiments were conducted on a phoneme recognition

task with the TIMIT database. The results show that the TT

formulation can greatly reduce the model size, with little

performance loss. With more TT layers involved, the model

size keeps decreased, and the performance keeps degraded

but still under control. However, if all the layers are TT, the

performance will be significantly reduced, indicating that pure

TT models are not powerful enough and so require at least

one full-connected layer to deal with the complex patterns of

speech signals. Interestingly, TT-DNNs perform much better

than full-connected DNNs with a similar model size.

In the future, we will study the theoretical limitation of the

TT format and investigate methods to improve its capacity.

We will also study the method with larger datasets.
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