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Abstract—This paper proposes a new and generalized algorith-
m of combination of nonlinear adaptive filters (CNAF) for nonlin-
ear acoustic echo cancellation (NAEC). In contrast to combining
filters in a conventional parallel manner, the candidate filters are
organized to form in a network structure with two subnetworks.
The nodes in each subnetwork serve as linear and nonlinear
adaptive filters respectively. A generalized CNAF (GCNAF) is
then obtained by linking the nodes in the network and using the
diffusion adaptation strategy. The proposed GCNAF algorithm
allows information exchange and sharing among the nodes, so
as to maximally optimize the performance of the combined
filters. Simulations with noise and speech signals demonstrate the
effectiveness of the proposed GCNAF for the NAEC problem.

Index Terms—Nonlinear acoustic echo cancellation, general-
ized combination of nonlinear adaptive filters, distributed opti-
mization

I. INTRODUCTION

Along with the widely used of the hands-free mobile phones
and video conference applications in our daily lives, acoustic
echo cancellation (AEC) has been widely studied in recent
years. Echoes are generated acoustically by the coupling
between the loudspeaker and the microphone via the impulse
response of a room [1]. Removal of these echoes requires the
precise knowledge of the impulse response of the acoustic
echo path, which can be time varying. There has been a great
interest in the use of adaptive filters as acoustic echo cancellers
to remove echoes. Moreover, the nonlinear acoustic echo
cancellation (NAEC) has received attention due to the inherent
nonlinearities in acoustic devices. A variety of structures have
been investigated in order to model nonlinear systems in prac-
tical applications, including trigonometric expansion [2]–[4],
neural networks [5], [6], block-based Wiener-Hammerstein
models [7]–[9], polynomial models [10]–[12], etc. A variety
of NAEC algorithms are proposed based on these structures.

To enhance the performance and alleviate parameter se-
lection dilemmas of adaptive filters, using the combination
of nonlinear adaptive filters (CNAF) is gaining interest in
NAEC. For example, collaborative functional link adaptive
filters (FLAF) were proposed in [2] based on the adaptive
combination of filters in order to improve their robustness
against different degrees of nonlinearity. A combination of
Volterra filters (CVF) and a combination of kernel (CK)
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filters were presented in [11]. While both approaches achieve
similar performance that is superior to a single VF, the latter
is significantly more efficient. An improved solution to the
CK scheme was subsequently developed in [12], named D-
NLAEC-AZK. However, the performance improvement of the
existing CNAF is somehow limited as the design method
neglects the internal structure optimization and information
interaction between linear filters and nonlinear filters.

Recently, distributed adaptation has emerged as an attractive
and challenging research area with the advent of multi-agent
networks. There are several useful distributed strategies for
data processing over networks including incremental strategies
[19]–[22], and diffusion strategies [23]–[27]. The convergence
rate of distributed optimization via diffusion strategies is
enhanced and adaptive diffusion performs better than a non-
cooperative strategy under certain conditions [24], [28]. Nodes
in an adaptive network may approach the centralized solution
through a continuous process of cooperation and information
sharing with neighbors.

Inspired by the work in [11], [24], [29], we propose a new
and generalized NAEC scheme of CNAF from the perspective
of the distributed optimization based on the diffusion strategy
over networks. The proposed GCNAF performs the filtering
task via a linear filtering subnetwork and a nonlinear filtering
one. In the linear filtering subnetwork, a combination of linear
filters is obtained by optimally linking each node that is asso-
ciated with a linear filter. Likewise, in the nonlinear filtering
subnetwork, a combination of nonlinear filters is constructed
by the topological linking of each node that is associated
with a nonlinear filter. A new scheme is then established
by combining the two subnetworks under the guidance of a
unified optimization objective function. Simulations with an
NAEC problem are conducted to validate the effectiveness of
the developed GCNAF.

II. DIFFUSION LMS ALGORITHM

Notation. Italic letters (e.g., x and X) denote scalars. Boldface
small letters (e.g., x) denote column vectors. Boldface capital
letters (e.g., X) denote matrices. The superscript (·)� repre-
sents the transpose of a matrix or a vector, and ‖ · ‖ denotes
Euclidean norm of its vector argument. We denote by Nk the
set of node indices in the neighborhood of node k, including
k itself.
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We consider a distributed network consisting of N nodes.
The problem is to estimate the same parameter vector, hT ,
of size L× 1. Diffusion adaptive strategies for the distributed
estimation of hT was derived in [24] by seeking the minimizer
of the following global cost function:

Jglob(h) =
N∑

k=1

Jk(h), (1)

where Jk(h) = E

{∣∣dk(i)−x�
k,ih

∣∣2
}

denotes the mean-square-
error cost at node k, with xk,i denotes an L×1 input vector at
time instant i, and dk(i) being the reference signal. Let hk,i

denote the estimate of the minimizer of (1) at node k and
time instant i. An adapt-then-combine (ATC) diffusion least
mean square (LMS) algorithm that solves (1) consists of the
following steps [24]:

φk,i = hk,i−1 + μk

∑

�∈Nk

c�kx�,ie�(i), (2)

hk,i =
∑

�∈Nk

a�k φ�,i. (3)

where e�(i) = d�(i) − x�
�,ih�,i−1. The cofficient c�k, a�k are

chosen to satisfy:

c�k ≥ 0,
N∑

�=1

c�k = 1, and c�k = 0, if � /∈ Nk,

a�k ≥ 0,
N∑

�=1

a�k = 1, and a�k = 0, if � /∈ Nk.

(4)

Namely non-negative coefficients c�k form to a right-stochastic
matrices C and a�k form to a left-stochastic matrix A.

III. THE PROPOSED GCNAF

In NAEC problems, combination of nonlinear adaptive
filters (CNAF) is gaining interest as it extends the linear model
with an extra nonlinear term. In this section, we propose a new
and generalized scheme of CNAF from the perspective of the
distributed optimization based on the diffusion strategy over
networks for NAEC.

A. Network structure of the GCNAF

Fig. 1 represents the proposed NAEC scheme, where we
extend the parallel structure of filters in conventional filter
combination schemes to a networked structure. The approach
consists of two concurrent adaptive layers: a diffusion network
layer and a combination layer. The former provides building
blocks for modeling the system, and is composed of a linear
filtering subnetwork and a nonlinear filtering subnetwork. The
latter aims to produce a replica of the echo signal y(i) by
combining the output of the two subnetworks. For simplicity
of exposition, we assume that both the linear and nonlinear
subnetworks have the same number of nodes, but the connec-
tions of nodes can be different.
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Fig. 1. Structure of the proposed generalized CNAF, consisting of a linear
filtering subnetwork and a nonlinear filtering subnetwork.

The outputs of node k in the linear and nonlinear subnet-
works at instant i are given, respectively, by:

y1,k(i) = x�
i h

lin
k,i, (5)

y2,k(i) = f(xi)
�hnlin

k,i , (6)

where hlin
k,i and hnlin

k,i denote, respectively, the linear and
nonlinear filter at node k and time instant i, and f(xi) is a
nonlinear map of xi.

The output of GCNAF is written as

y(i) =

N∑

k=1

[
λ1,k(i)y1,k(i) + λ2,k(i)y2,k(i)

]
, (7)

where N denotes the number of nodes and λ1,k(i), λ2,k(i)
are mixing parameters. The error signal, denoted as e(i), is
consequently defined by

e(i) � d(i)− y(i). (8)

We also define the local errors e1,k(i) and e2,k(i), which are
associated to node k of the linear and nonlinear subnetworks,
respectively by:

e1,k(i) � d(i)− x�
i h

lin
k,i−1 −

N∑

n=1

λ2,n(i)f(xi)
�hnlin

n,i−1, (9)

e2,k(i) � d(i)− f(xi)
�hnlin

k,i−1 −
N∑

n=1

λ1,n(i)x
�
i h

lin
n,i−1. (10)

We will use e(i) to adjust mixing parameters λ1,k(i) and
λ2,k(i), and use e1,k(i) and e2,k(i) to adjust the estimates
hlin
k,i and hnlin

k,i−1.

B. Adaptation of the linear and nonlinear filters

The proposed GCNAF scheme using the ATC diffusion
LMS algorithm. According to (2), the update of the linear
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filters can be written as

φlin
k,i = hlin

k,i−1 + μ1,k

∑

�∈N1,k

c1,�kxie1,�(i), (11)

hlin
k,i =

∑

�∈N1,k

a1,�k φ
lin
�,i . (12)

Similarly, the update of the nonlinear filters can be written as

φnlin
k,i = hnlin

k,i−1 + μ2,k

∑

�∈Nk

c2,�kf(xi)e2,�(i), (13)

hnlin
k,i =

∑

�∈N1,k

a1,�k φ
nlin
�,i . (14)

C. Adaptation of the mixing parameters

Updating the mixing parameters λ1,k(i) and λ2,k(i), k =
1, 2, · · · , N , can be performed by minimizing the squared
error e2(i). In order to address the constraints on λ1,k(i)
and λ2,k(i), we reparameterize them with a softmax activation
function, i.e.:

λ�,k(i) =
exp(α�,k(i))∑N
j=1 exp(α�,j(i))

, for � = 1, 2, j = 1, · · · , N,

(15)
which guarantees that 0 < λ�,k(i) < 1 and

∑N
k=1 λ�,k(i) =

1. Applying the gradient descent adaptation with respect to
α�,k(i) leads to

αl,k(i) = αl,k(i− 1) +
ηl,k

rl,k(i)
e(i)(e(i)− el,k(i))λl,k(i),

for � = 1, 2,
(16)

where η�,k are step size parameters, and rl,k(i) = βrl,k(i −
1) + (1 − β)(e(i) − el,k(i))

2 are rough low-pass filtered
estimates and the parameter β is a smoothing factor. The value
of αl,k(i) is kept within [-4,4] for practical reasons [30].

Now considering the NAEC problem of online system
estimation, the entire algorithm is summarized in Algorithm 1.

IV. SIMULATIONS

In this section, simulations were conducted to illustrate the
performance of the proposed GCNAF scheme under different
linear-to-nonlinear distortion power ratios (LNLRs) and to
compare the results with those of several other algorithms of
NAEC.

The reference signal d(i) was considered by using the
following input-output relation

d(i) = h�
T [xi + σ(i)f(xi)] + v(i), (21)

with v(i) being additive white Gaussian noise. The variance
of v(i) was adjusted so that SNR = 30 dB. Considering hlin

T =
hT and hnlin

T = σ(i)hT. Note that the parameter σ(i) allows
us to adjust the LNLR, namely,

LNLR = 10log10

(
E
{‖xi‖2

}

E
{‖σ(i)f(xi)‖2

}
)
. (22)

Algorithm 1: GCNAF algorithm for NAEC.
Parameters: Preset

- positive step size μi,j for all nodes (filters);
- right-stochastic matrices C1 and C2;
- left-stochastic matrices A1 and A2;

Initialization: Set hlin
k,0 = 0, and hnlin

k,0 = 0.
Algorithm: At each time instant i ≥ 1:

• Node k in the linear subnetwork updates hlin
k,i by:

φlin
k,i = hlin

k,i−1 + μ1,k

∑

�∈N1,k

c1,�kxie1,�(i), (17)

hlin
k,i =

∑

�∈N1,k

a1,�k φ
lin
�,i , (18)

with
e1,k(i)=d(i)−x�

i h
lin
k,i−1−

∑N
n=1λ2,n(i)f(xi)

�hnlin
n,i−1.

• Node k in the nonlinear subnetwork updates hnlin
k,i by:

φnlin
k,i = hnlin

k,i−1 + μ2,k

∑

�∈Nk

c2,�kf(xi)e2,�(i), (19)

hnlin
k,i =

∑

�∈N1,k

a1,�k φ
nlin
�,i , (20)

with
e2,k(i)=d(i)−f(xk,i)

�hnlin
k,i−1−

∑N
n=1λ1,n(i)x

�
i h

lin
n,i−1.

• Update the combination weights {λi,j} by (15)
and (16).
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Fig. 2. The impulse responses of echo path used for hT in simulations.

In our work, the echo path was measured in a real room
within our laboratory, using the sampling rate of 8 kHz, and
the measured impulse responses were then truncated to 512
samples and used as hT in simulations, as shown in Fig. 2.

The proposed scheme with two different types of inputs
were tested: a stationary white Gaussian process and a speech
signal. Note that speech signals are highly non-stationary and
self-correlated. For comparison, the linear normalized least-
mean-square (LNLMS) algorithm and the CK algorithm [11]
were also evaluated. The echo return loss enhancement (ER-
LE) was used to evaluate the performance, which is defined
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Fig. 3. Performance illustration with hT abruptly changed at i = 4 s with
LNLR= 10 dB and SNR= 30 dB. From top to bottom: ERLE evolution
of GCNAF, CK and LNLMS; evolution of the GCNAF mixing parameters
{λ1,k} and {λ2,k}.

by

ERLE(i) � 10log10

(
E{d2(i)}
E{e2(i)}

)
, (23)

evaluated by averaging 100 independent Mont-Carlo runs.

A. Simulations with white Gaussian input

We first used the white Gaussian random process as the
input. For GCNAF and CK, the number of nodes (filters in
each subnetwork) was set to 3, and step sizes were set to
μ1,1 = 0.001, μ1,2 = 0.01, μ1,3 = 0.5, μ2,1 = 0.001, μ2,2 =
0.01, μ2,3 = 0.5. The mixing parameters {λ1,k} and {λ2,k}
were adapted by using η1,k = η2,k = 1 and β = 0.9.

For GCNAF, we considered a fully connected graph, i.e.,
all nodes were connected with N1,k = N2,k = {1, 2, 3} for
∀k. The diffusion matrices C1 and C2 were set to

C1 = C2 =

⎡

⎢⎢⎣

0.7 0.2 0.1

0.1 0.7 0.2

0.2 0.1 0.7

⎤

⎥⎥⎦ . (24)

Matrix A1 = C1 and A2 = C2 were used. Recall that the
CK algorithm corresponds to the setting C1 = C2 = I and
A1 = A2 = I.

The polynomial nonlinearity [11] settings was used for
testing the performance:

fi(xi) = x2(i) +
9

10
x2(i− 1) +

1

2
x3(i− 2). (25)

In the first simulation, we studied the performance of
GCNAF in the NAEC scenario with an abruptly change of
the echo path, i.e., hT changed from the impulse response
1 to impulse response 2 in Fig. 3 at i = 4 s. The top of
Fig. 3 plots the ERLE evolution of GCNAF and the compared
algorithms. One can see that GCNAF outperforms the other
two algorithms in steady-state performance. The evolution of
the mixing parameters is shown in the bottom of Fig. 3. In
this NAEC scenario where the linear component is dominant,

0 5 10 15
0

0.5

1
1,1(i) 1,2(i) 1,3(i)

0 5 10 15
0

0.5

1

2,1(i) 2,2(i) 2,3(i)

0 5 10 15
0

10

20

30
LNLMS CK GCNAF

Fig. 4. Performance evolution with SNR= 30 dB. LNLR has been initially
set to 0 dB, and then changed to 10 dB and 20 dB at i = 5 s and i =
10 s, respectively. From top to bottom: ERLE evolution of GCNAF, CK and
LNLMS; evolution of the GCNAF mixing parameters {λ1,k} and {λ2,k}.

the linear subnetwork requires a larger step size at the initial
phase.

In the second simulation, we studied the performance of
GCNAF with different degrees of nonlinearity f(xi). The
parameter σ(i) in (21) was adjusted so that the LNLR is
initially equal to 0 dB, and then changed to 10 dB and 20
dB at i = 5 s and i = 10 s. We observe that during all
the phases, the proposed GCNAF method outperformed the
LNLMS and CK algorithms. The LNLMS algorithm yielded
the worst performance since it was not able to model the
nonlinearity in the system. The CK algorithm showed a
significantly better performance compared to LNLMS, but it
was inferior to the proposed GCNAF method. This indicates
that the information exchange in the proposed networked filters
helped enhance the estimation performance. The evolution of
the mixing parameters is shown in the bottom of Fig. 4.

B. Simulations with a speech input

In this part, we examined the performance of the studied
algorithms with a segment of speech signal as the system
input. The waveform of the speech signal is plotted on Fig. 5.
The polynomial nonlinearity setting (25) was used, and the
parameter σ was adjusted to achieve LNLR = 0, 10, and 20 dB
respectively. For the GCNAF and CK algorithms, the number
of linear and nonlinear filters was set to 2, and step sizes
of filter were set to μ1,1 = 0.05, μ1,2 = 0.5, μ2,1 = 0.05,
μ2,2 = 0.5. The parameters for updating {λ1,k} and {λ2,k}
were set to η1,k = η2,k = 1 and β = 0.9. We considered
the diffusion algorithm with the following doubly stochastic
matrices:

C1 = C2 =

[
0.7 0.3

0.3 0.7

]
. (26)

Matrix A1 = C1 and A2 = C2 are used.
The middle of Figs. 5(a), 5(b) and 5(c) plot the ERLE results

achieved by GCNAF and the other two studied algorithms
under three different LNLR levels respectively. One can see
from Fig. 5(a) that the LNLMS algorithm is significantly
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(b) LNLR= 10 dB
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(c) LNLR= 20 dB

Fig. 5. Performance when using a speech signal as the system input with SNR= 30 dB. From top to bottom: input signal; ERLE evolution of GCNAF, CK
and LNLMS; evolution of the GCNAF mixing parameters {λ1,k} and {λ2,k}.

inferior to the other two studied algorithms in performance
in the presence of strong nonlinearities. In Fig. 5(c), the
performance difference between the GCNAF and LNLMS
algorithm becomes smaller since the linear component is
now dominant. All the results demonstrate the advantage of
GCNAF over the CK and LNLMS algorithms, particularly in
the case of LNLR= 0 dB, where the nonlinearity is significant.
The time evolution of the mixing parameters are plotted in the
bottom of Figs. 5(a), 5(b) and 5(c).

V. CONCLUSIONS

In this paper, a new and generalized CNAF (GCNAF) for
NAEC was proposed based on the diffusion strategy over
networks. In contrast to the existing CNAF, the proposed
GCNAF links the nodes via the topological structure of the
network in which each node represents either a linear or a
nonlinear filter. The adaptation performance was significantly
enhanced as compared to CNAF due to the information
exchange within the network. Simulations with noise and
speech signals demonstrated the effectiveness of the proposed
GCNAF for an NAEC problem.
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[10] A. Guérin, G. Faucon, and R. L. Bouquin-Jeannės, “Nonlinear acoustic
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