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Abstract—Although 10-bit monitors are getting popular, most
of the available media sources are 8-bit. The inconsistence
between the low-bit-depth media sources and high-bit-depth mon-
itors should be properly solved to make full use of the high-bit-
depth equipment. Simply converting low-bit-depth images/videos
to high-bit-depth ones via zero-padding would result in false
contour artifacts in smooth region, which greatly degrades the
visual quality. In this paper, a novel auto-encoder like CNN model
is proposed to convert low-bit-depth images to high-bit-depth
ones. Our method can significantly suppress false contour by the
use of vgg loss (mean square error computed on pre-trained
VGG-19 feature maps). However, significant color distortion
would be found in some results if only vgg loss is used. In
order to suppress color distortion, range loss is proposed which
restrains the difference between the resultant pixel values and
the zero-padded ones within the range of [0, S), where S is the re-
quantization step. Benefit from the novel network model and the
designed loss function consisting of range loss and vgg loss, the
proposed method has comparable objective metric with state-of-
the-art. In particular, our method achieves better visual quality
by significantly suppressing false contour artifacts and color
distortion. Those conclusions are proved by experiments, and our
code can be found at https://github.com/pengcm/BE-AUTO-ext.

I. INTRODUCTION

Good watching experience has always been the target of
the audiences and multimedia industry. It leads to the transi-
tions from black-white videos to RGB-color ones; from VGA
(640x480) modes to HD(1280 x 720) modes, and the forth-
coming 4K/8K UHD modes in spatial resolution range [1];
and from conventional 8-bit to 10-bit per pixel color channel
in bit-depth range. Although the monitors are going to support
4k/8k and 10-bit display, most of the current media sources are
of lower bit-depth and spatial resolution. Super-resolution is
there to expand the spatial resolution. Corresponding to super-
resolution in spatial resolution expansion, technology used to
expand bit-depth is called bit-depth enhancement.

To display low-bit-depth images on high-bit-depth monitors,
bit-depth should be expanded. The most basic and simple
way is ZP (Zero-Padding), which adds zeros after the least
significant bits to get the target bit depth. However, ZP results
have severe false contour artifacts as depicted in Fig.1. The
lower part of Fig.1 is the original 16-bit image, and the upper
part is gotten by quantizing the original image to 4-bit, then
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Fig. 1. The example of false contour artifacts. The lower part is the original
16-bit image, and the upper part is uniformly quantified from 16-bit to 4-bit,
then enhanced back to 16-bit via ZP.

expanding back to 16-bit via ZP. As is presented in Fig.1, false
contour can be seen in smooth areas, which greatly degrades
the visual quality.

With the obvious incompatibility between the popularizing
10-bit monitors and existing 8-bit media sources, researches
on bit-depth enhancement for better visual quality are of
great importance. A close but different issue is inverse tone
mapping iTM [2], where high dynamic range (HDR) images
with hallucinated details in local minimum/maximum regions
are reconstructed from low dynamic range (LDR) images.
Those details are lost because of the non-linear tone mapping,
or the limited exposure range, which results in detail loss in
over/under-exposure regions. However, bit-depth enhancement
aims at recovering the lost detail caused by limited quantiza-
tion levels. As iTM methods are used for different detail loss
type, they are not suitable for bit-depth enhancement tasks.

Many bit-depth enhancement methods have been proposed
in recent years. As simple as ZP, bit replicate BR [3] replicates
MSB (most-significant-bits) to the newly extended LSB (least-
significant-bits), but false contour artifacts are still severe.
Filtering based methods use non-linear filters with adaptive
window size, such as [4], can get better visual quality com-
pared with ZP and BR. As is shown in [5] and ACDC [6],
properly making use of image prior, such as smooth prior
and/or sparsity characteristics of image surface, can produce
visual results of better quality. Optimization based methods
such as ACDC [6], MRC [7] and [8] model the bit-depth
enhancement task as minimization problems. By formulating
the relationship between the LBD (Low-Bit-Depth) and the
generated HBD (High-Bit-Depth) with probability theory, con-
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tour artifacts are relieved by maximizing a posteriori. Content-
adaptive means like [9]–[11] take content information into
consideration when estimating the added bits’ values. IPAD
[12] novelly introduces intensity potential field to model the
relationship between pixels and gets state-of-the-art perfor-
mance.

Compared with the flourish research on deep learning-based
methods for image super-resolution, only two CNN-based
methods [1], [13] are proposed for bit-depth enhancement.
In [1], Liu et al. introduce CNN to solve image bit-depth
enhancement task. As is stated in [1], although MSE (Mean
Square Error) loss computed on the input and output images
is commonly used in image super-resolution, it can’t suppress
false contour artifacts when used in bit-depth enhancement
tasks. Alternatively, they use perceptual loss (MSE on VGG-
19 feature maps of the ground truth image and the generated
one) as the minimization function. Meanwhile, convolution
layers are also replaced by deconvolution to get more realistic
results. Even though BE-RTCNN [1] relieves false contour
artifacts, color distortion is obvious in some test images as
depicted in Fig. 4(b). Ref [13] is an auto-encoder like CNN
model for video bit-depth enhancement.

To better solve the task of bit-depth enhancement, a new
CNN-based method is proposed in this paper. Our method is an
auto-encoder like CNN model, where the encoder is realized
with convolution layers to extract features, which are then
used by the full-deconvolution implemented decoder. To make
efficient data flow in the network and overcome the gradient-
vanish problem in deep neural network, skip-connections are
used to link the corresponding layers in the encoder and
the decoder modules. To suppress false contour artifacts and
color distortion in previous methods, we simultaneously use
perceptual loss used in [1] and the loss named range loss
originally proposed in this paper. Range loss is a piecewise
punishment function, which constrains the difference between
the pixel values of the resultant image and the input image
within the range of quantization bin. Experiments show that
the proposed method enhances bit-depth effectively with com-
parable objective metric with state-of-the-art. In particular,
our method achieves better visual quality by significantly
suppressing false contour artifacts and color distortion.

The rest of this paper is organized as follows. Section II
presents the problem modeling and our network structure,
perceptual loss (vgg loss), and the range loss we propose.
Experiments are presented in section III with comparison
between our method and other related algorithms both visually
in figures and objectively on PSNR. Conclusions are presented
in section IV.

II. PROPOSED ALGORITHM

A. Problem modeling

Quantizer is used to convert the continuous luminous in-
tensity to integer value with finite binary bits. The number of
bits is called bit-depth. Common bit-depth are 8-bit,10-bit and
16-bit. Images of different bit depths vary in the diversity of
colors, and the more bits, the more color levels and realistic

visual quality. Meanwhile, the more data to be transmitted and
stored.

The quantization methods can be divided into uniform
quantization and non-uniform quantization, where uniform
quantization is the most commonly used. Under uniform quan-
tization, converting a high-bit-depth image into low-bit-depth
one is just abandoning the n least-significant-bits, where n is
the gap of bit-depth. Bit-depth enhancement is just the reverse
procedure, which converts low-bit-depth image to high-bit-
depth one. Zero-Padding ZP is the simplest way. ZP extends
the least-significant-bits of the low-bit-depth image naively
with zeros to get the wanted bit-depth. Although ZP is simple,
severe false contour artifacts are encountered in the results.
As is shown in Fig. 1, contour artifacts appear in flat gradient
areas under ZP, which greatly degrade the visual quality. The
main purpose of bit-depth enhancement is to find a function
mapping the LBD image to HBD, and try to maximize the
likelihood between the real HBD and the reconstructed one
with the help of some image prior. This can be formally
expressed by (1), where l measures the similarity between the
ground truth HBD and the reconstructed one; f is the function
mapping LBD image to HBD; p is prior term like sparsity [5],
content [10], [11], or context [9].

argmax
f

l(IHBD, f(ILBD)) s.t. p(ILBD). (1)

Deep learning is now the most hot research area. It is
widely used in recommendation system, image classification,
object tracing, image super-resolution, etc. It is a data-driven
methodology in the sense that it uses great amount of data to
train the neural network. In the training process, loss function
and gradient decent guide the network to digit the inner
universal operation that non-linearly maps the input to the
corresponding label. When using CNN to implement bit-depth
enhancement, (1) can be instantiated as (2), where θ is the
weights of the network.

argmin
θ

loss(IHBD, CNNθ(I
LBD)) (2)

B. Our CNN-model

Our network is an auto-encoder like one consists of encoder
module and decoder module as depicted in Fig. 2. In the
encoder module, we use 5 convolution layers with incremental
filter number to extract features at different levels starting from
the input image. In the decoder module, 5 deconvolution layers
are used to reconstruct image from the features extracted by
encoder module. To overcome range shift of deconvolution
layers and relieve gradient vanishing problem, we add a batch-
normalization-layer [14] after each deconvolution layer. Skip-
connections link the convolution layers in encoder and the
corresponding deconvolution layers in decoder to make better
data flow and help the gradient decent. Activation layers used
in our network are all ReLU as [1] has done.
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Fig. 2. Network model of our algorithm. Our network takes RGB images as
input and generates RGB images; k∗m∗s∗ is the parameters of corresponding
conv/deconv layer where k means kernel size (k×k), m means the number of
feature maps, s means conv/deconv stride. Green lines are skip-connections,
and the skip-connected feature maps are pixel-wise added.

C. Loss function

Loss function is critical to the network, for it greatly decides
the robustness and results’ quality of the network. Commonly
used loss function in related super-resolution tasks is MSE
loss, and it is a plain mean squared difference of pixel values
between the generated image and the ground truth. As is stated
in [1], the exclusive use of MSE loss in bit-depth enhancement
can not suppress false contour artifacts. In SRGAN [15],
perceptual loss is used to yield super-resolutioned images
with better realistic and natural textual details. And authors
of SRGAN show that perceptual loss implemented as MSE
on VGG-features, i.e. vgg loss as we formulate in (3), can
better realize that target than plain MSE on the image pair,
i.e. mse loss stated by (4). Inspired by this, we use MSE on
VGG-features as a component of our loss function and we
call this component vgg loss, which is formally expressed
by (3). It should be mentioned that vgg loss is used as the
unique loss function in [1], [16] where it is called perceptual
loss. As is depicted in Fig. 4(b), exclusively using vgg loss
can truly suppress false contour artifacts at some level, but
color distortion can be obviously seen in some cases. It can
be found that pixel values in color-distortion area exceed the
valid range seriously. For example, when we extend a uniform-
quantified 4-bit image back to 16-bit, the valid range for pixel

TABLE I
SYMBOL TABLE

symbol meaning

I, i the number and index of the layer of G

Ji, j the number and index of the i-th layer’s channels

W,H the width and height of the image/feature

x, y the coordinate of pixels

G the CNN which is used to generate the results

IHBD the original HBD

ÎHBD the generated HBD

S the length of valid range

ω1, ω2 the punishment factor for within/out of the valid range

values of the result is [lsb + 0, lsb + 2e(16-4)), where lsb
is the pixel value of the considering pixel of the zero-padded
image. Based on this prior that pixel value must lie in the valid
range, we propose another loss function component called
range loss, as is stated by (5). It can be seen as a piecewise
punishment function. To suppress false contour artifacts and
color distortion at the same time, we use a two-component
loss function which consists of vgg loss and range loss
formulated by (6), where λ1 and λ2 are the weights.

vgg loss =
I∑

i=1

Ji∑
j=1

Wi,j∑
x=1

Hi,j∑
y=1

1

IJiWi,jHi,j
(G(IHBD)i,jx,y

−G(ÎHBD)i,jx,y)
2

(3)

mse loss =
1

WH

W∑
x=1

H∑
y=1

(IHBDx,y − ÎHBDx,y )2 (4)

range loss =
1

WH

W∑
x=1

H∑
y=1

P (ÎHBD, ILBD)x,y where

P (A,B)x,y =

{
ω1 Ax,y ∈ [Bx,y,Bx,y + S)

ω2 Ax,y /∈ [Bx,y,Bx,y + S)

(5)

loss = λ1 · vgg loss + λ2 · range loss. (6)

III. EXPERIMENTS

In this section, we will valid the effectiveness of our network
structure and loss function form. After that, comparison with
most representative methods for bit-depth enhancement are
presented, both in objective metric PSNR and in subjective
visual evaluation.
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A. Experiment settings

As our algorithm is CNN-based, and [1] is the only method
using CNN for image bit-depth enhancement, we use the same
dataset as [1] for comparison. The train set contains 1000
frames randomly selected from the 20-thousand Sintel dataset
[17], which is 16-bit 436 x 1024. The test set is also the eight
frames used as test set in [16], which is the conference version
of [1], and the names of the eight frames are strictly the same
as what they are in [16]. The train is performed on a NVIDIA
1050Ti GPU with 3GB memory. Batch size is set to 8 with
120 epochs. For every image, we randomly select a 96 x 96
patch in every epoch. Learning rate is 1e-4. Adam optimizer
with beta1=0.9 is taken. λ1 and λ2 are set to 0.6 and 5e-6,
ω1 = 0, ω2 = 65535. We linearly compress the 16-bit images
to 4-bit ones, then use Zero-Padding to pad them back to 16-
bit, which is used as the network input. All the following
results are conducted in this 4-bit-to-16-bit scenario. In order
to avoid local minima in early training step, we use mse loss
for the first epoch to pre-train the network.

B. Convolution vs. Deconvolution

The difference between convolution and deconvolution
mainly lies in the logical mode. Convolution is bottom-
up, which extracts features from lower-abstract-level feature
maps, e.g. from raw image to features like edges, lines; On
the contrary, deconvolution tries to reconstruct lower-level
features top-down [18]. Following this intuitional guideline,
we use convolution layers to extract features and reconstruct
image from them using the following deconvolution layers.
This methodology is just validated by Fig. 3, where full-
conv/deconv means all the layers in the network are imple-
mented as convolution/deconvolution layers, and conv-deconv
represents the methodology we take, i.e. using convolution lay-
ers to construct encoder module and deconvolution for decoder
module. As we can see from Fig. 3, network implemented
as conv-deconv version dominates full-conv on all the 8 test
images which are randomly selected from Sintel dataset as
stated in [16]; full-deconv implementation performs better than
conv-deconv on IMG2, but it is worse than conv-deconv on
the others. In addition, it obviously lacks of robustness.

C. Color distortion and range-loss

The exclusive use of vgg loss can suppress false contour
artifacts, but color distortion appears in some results, which is
also reported in [1]. Color distortion degrades visual quality
as false contour artifacts do, so we need to suppress it as well
for better quality. As we have explained in section II, pixel
values in color distorted regions seriously exceed the valid
range. Based on this founding, we propose range loss. The
effectiveness of range loss is shown by Fig. 4. We can see
that color distortion happens at the flame and the right shoulder
of the girl from Fig. 4(b), which is the result without the use of
range loss. Color distortion can be significantly suppressed
by range loss as depicted by Fig. 4(c).

Fig. 3. Conv VS. Deconv. The comparison of the effect conv/deconv on the
performance of the network evaluated on PSNR. The last three bars are gotten
via the plain average of the corresponding eight images.

(a) ground-truth

(b) without range loss

(c) with range loss

Fig. 4. Color distortion suppression with range loss. (a) is the ground truth
image;(b) is the result of exclusively using vgg loss without range loss;and
(c) is the result of using vgg loss with range loss simultaneously.

D. Comparison with state-of-the-art

In this section, our method is compared with state-of-the-
art bit-depth enhancement methods, including ZP, MIG, BR
[3], MRC [7], ACDC [6], CRR [11], CA [10], IPAD [12]
and BE-RTCNN [1]. Table II lists the PSNRs of the eight test
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(a) GT (b) ZP

(c) BE-RTCNN (d) ours

Fig. 5. Visual comparison with state-of-the-art.

(a) GT (b) ZP

(c) BE-RTCNN (d) ours

Fig. 6. Visual comparison with state-of-the-art.

images under the listed methods. In that table, PSNR values of
BE-RTCNN are extracted from [16], which is the conference
paper of [1]. Values in bold mean the best, and the second-
best is emphasized by underline. As we can see in Table II,
our method can produce results which have higher PSNR than
BE-RTCNN(the only one CNN-based method for image bit-
depth enhancement), like IMG2 and IMG4, even though not
as good as BE-RTCNN in the other cases of the test set. Our
method, on average, has second-best objective metric PSNR
when compared with state-of-the-art.

The core advantage of our method is producing results of

better visual quality, and this is depicted by Fig. 5 and Fig. 6.
In those two figures, Fig. 5(a) and Fig. 6(a) are the original
images; Fig. 5(b) and Fig. 6(b) are the results of ZP, where
false contour artifacts are obvious, and they degrade visual
quality severely. Fig. 5(c) and Fig. 6(c) are the BE-RTCNN
results. BE-RTCNN suppresses contour artifacts at some level,
but color distortion happens at the border of the flowers, the
wing of the dragon and on the roofs, etc. Color distortion
is emphasized by using red rectangular boxes in those two
sub-figures. Fig. 5(d) and Fig. 6(d) are the results of our
method. Compared with ZP in Fig. 5(b) and Fig. 6(b), our
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TABLE II
COMPARISON WITH STATE-OF-THE-ART ON PSNR

ZP MIG BR MRC [7] ACDC [6] CRR CA IPAD [12] BE-RTCNN1[1] ours

IMG1 29.9452 30.7667 30.0000 32.2148 33.9726 29.7819 35.0805 34.4545 35.1052 34.7972

IMG2 28.8946 32.2364 28.9457 33.0027 35.7154 35.7981 36.2761 36.4827 36.4582 36.8795

IMG3 28.5461 31.7070 28.5954 33.7119 32.6138 32.7263 34.9535 34.6487 35.2115 34.1946

IMG4 29.3589 30.0110 29.4127 30.9309 34.9019 31.5720 35.2872 36.4388 35.9715 36.8685

IMG5 28.8932 30.8676 28.9440 31.6325 34.1867 34.6148 36.1632 35.7061 35.9674 35.1526

IMG6 31.8807 33.0015 31.9376 35.5890 30.0466 27.0007 32.8041 31.1019 37.9192 33.6237

IMG7 31.4774 32.7361 31.5399 34.8553 32.3445 28.0670 34.5621 33.2172 37.3571 35.3399

IMG8 28.7163 31.7551 28.7653 32.8013 32.9975 31.1205 34.8089 33.8435 34.7358 34.2022

MEAN 29.7141 31.6352 29.7676 33.0923 33.3474 31.3352 34.9920 34.4867 36.0907 35.1323
1 means the results we directly extracted from [16]

method suppress false contour artifacts in smooth gradient
regions significantly. What’s more, our method can suppress
color distortion which arises in BE-RTCNN’s results.

Proven by Fig .5, Fig. 6 and Table II, our method can
enhance image bit-depth effectively. Objectively, our method
has second-best PSNRs among currently known methods.
And for visual result, which is the core goal of bit-depth
enhancement, our method produces better visual quality by
significantly suppressing false contour artifacts and color dis-
tortion. It should be mentioned that, the better visual results of
our method comes from the novel auto-encoder like network
structure and the two-component loss function we propose.

E. Logical analysis

Loss function proposed in this paper consists of vgg loss
and range loss. These two terms are used for the suppression
of false contour and color distortion respectively. For false
contour suppression, we use vgg loss rather than mse loss.
mse loss pursues pixel-wise likelihood and treats pixels sep-
arately, while vgg loss is based on the features extracted
by the convolution layers. vgg loss aims at minimizing the
difference of context between the generated image and the
label at multi abstract levels (convolution layers of VGG-
19), so it can produce better visual quality and photo-realistic
texture in result images than mse loss.

The color of a pixel is decided by the values of all the
color-channels (such as RGB) jointly. Once a color component
changed, color distortion may arise, and distortion degree is
in proportion to the gap between the result and the ground-
truth. Pixel values in color distortion areas are different from
ground-truth and exceed valid range seriously. Based on the
range prior, range loss restricts the guessed values within
valid range via punishment, thus can lessen the difference
between the guessed pixel value and the ground truth, and
suppress color distortion.

IV. CONCLUSIONS

In this paper, we propose an auto-encoder like CNN model,
where the encoder and decoder are implemented with 5 con-
volution layers and 5 deconvolution layers respectively. Skip

connections are also used to make the training easier. For better
visual results, we use vgg loss instead of mse loss mostly
used in feed-forward networks. The exclusive use of vgg loss
can suppress false contour artifacts, but color distortion arises.
To deal with this, we introduce range loss based on the
finding that pixel values in color distorted region exceed valid
range. With the novel auto-encoder like network model and
the loss function consisting of range loss and vgg loss,
our method produces results which are comparable with the
state-of-the-art PSNRs. In particular, our method produces
better visual quality by significantly suppressing false contour
artifacts and color distortion as is shown by Fig. 5 and Fig. 6.
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