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Abstract—In addition to the phone sequences, articulatory
attributes in spoken utterances have demonstrated salient cues
for supervised training of acoustic models in automatic speech
recognition (ASR). In this paper, a multi-task learning (MTL)
scheme for neural network-based acoustic modeling is pro-
posed. It aims to simultaneously minimize the cross-entropy
losses of the triphone-states and articulatory attributes, given
their corresponding true alignments. Supposing the articula-
tory information associated with the physical process is not
as abstract and composite as the phonetic descriptions, the
layer-wise neuron sharing occurs only in the first few layers.
Moreover, instead of the fully-connected feed-forward networks
(FFNs), the well-known structure of time-delay neural networks
(TDNNs) is adopted to efficiently model the long-term contexts
of each acoustic input frame. The results of experiments on the
MATBN Mandarin Chinese broadcast news corpus show that
our proposed framework achieves relative character error rate
reductions of 3.3% and 5.7% over the non-MTL TDNN-based
system and the MTL-FFN-based system, respectively.

Index Terms—multi-task learning, articulatory attributes, deep
neural networks, time-delay neural networks, LVCSR

I. INTRODUCTION

In recent years, automatic speech recognition (ASR) has
gradually become an indispensable application in the in-
dustry of artificial intelligence. Because of the increasing
computational capability and accessibility to big audio data,
deep neural networks (DNNs) have become the mainstream
architecture for acoustic modeling in large vocabulary contin-
uous speech recognition (LVCSR) instead of the traditional
Gaussian mixture model (GMM)-based models [1].

Most speech recognition decoders today are based on
phones (or phonemes), which, in other perspectives, are often
given excessive legitimacy in the speech processing com-
munity, particularly with regard to the assumption that the
sequence of acoustic observations can be forcibly aligned with
the sequence of phones. These phones are viewed as the basic
units of speech, but it is now widely believed that they can be
broken down into smaller, essential and fundamental units [2].
Although there is no consensus on what these units are, we will
take the most popular view, called the articulatory features.
Some recent research works have incorporated articulatory
knowledge into the acoustic models to better classify phones
or improve the performance of LVCSR systems [3–5].

For example, in [3], a framework called automatic speech
attribute transcription (ASAT) was proposed for developing

detection-based ASR based on attribute detection and knowl-
edge integration. In ASAT, bottom-up knowledge integration
was accomplished through a two-step process: the events or
attributes of speech were first detected by a learning machine,
such as an artificial neural network (ANN), and then the
detected cues were integrated into the ASR system using
evidence mergers or lattice rescoring techniques [6, 7]. This
knowledge, lurking in a speech utterance or phrase, describes
the mouth, lips, and tongue attributes of each phoneme and has
been summarized by linguists and phoneticians for decades.

However, with the development of DNNs, the models
have been integrated in the hidden Markov model (HMM)
framework, and the DNN-HMM ASR systems are superior to
detection-based ASR systems. So some studies integrated the
articulatory attributes into DNN-HMM systems through multi-
task learning (MTL) techniques and treated the articulatory
attributes as auxiliary roles. For instance, Zheng et al. pro-
cessed acoustic and phonetic information in both model and
feature domains using three different feed-forward networks
(FFNs) [8]. In the model domain, attribute classification was
used as the secondary task (or subtask) to help improve the
performance of phone recognition with an FFN by lifting
its discriminative ability on pronunciation. In the feature
domain, attribute-based features were extracted from another
FFN trained for attribute classification, where triphone-state
classification was taken as the subtask. Finally, the attribute-
aware features and the acoustic features were combined to
train the third MTL-based FNN for acoustic modeling. It
is worth noting that in Zheng’s work, attribute classification
was formulated as multiple independent binary classification
problems, one for each attribute.

On the practical side, there is no doubt that Kaldi1 is one of
the most popular open-source toolkits [9], providing industrial
engineers and academic researchers working in the speech
processing area with the most advanced and regularly updated
training recipes and a fair ground for comparison. Based on the
topology of HMMs and weighted finite-state transducers (WF-
STs), Kaldi also generates high-quality word/phone lattices
that are sufficiently efficient for real-time decoding. Therefore,
we attempt to build an acoustic model based on the recently
popular time-delay neural networks (TDNNs) with the multi-
task learning strategy in the nnet3 setup in Kaldi [10, 11].

1http://kaldi-asr.org

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

855978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



TABLE I
ARTICULATORY ATTRIBUTES AND THEIR ASSOCIATED PHONES IN

MANDARIN GRAPHEME-PHONEMES IN HANYU PINYIN.

category attribute grapheme-phoneme

place

bilabial b p m

labiodental f

alveolar d t l n

dental z c s ii

retroflex zh ch sh r err iii

palatal j q x a o e er i u v

velar g k h nn ng

manner

stop b p d t g k

fricative f s sh r x h

affricative z zh c ch j q

nasal m n nn ng

lateral l

n/a all vowels

backness

back o er u

central a err iii

front e i v ii nn ng

n/a all consonants

height

high i ii iii u v

low a ng

middle high o er nn

middle low e err

n/a all consonants

roundedness
rounded o u v ng

unrounded a er e err i ii iii nn

n/a all consonants

In this paper, we formulate acoustic modeling into a multi-
task learning problem (abbreviated as MTL-TDNN), where the
TDNNs are exploited as the primary structure of the acoustic
model, and the classification of the articulatory attributes is
the subtask. MTL-DNN based models use back propagation
to affect the features extracted from the shared hidden layers
by training subtasks. In TDNNs, the higher layers have the
ability to learn broader temporal relationships. We connect
the substasks to the first few layers because the attributes of
a phone do not span a long time. In this way, the layer-wise
neuron sharing occurs only in the first few layers, and the
articulatory information has a greater impact on the features
extracted from the lower layers than the features extracted
from the higher layers.

In summary, the highlights of this paper in comparison with
other relevant works are threefold.

1) Unlike most MTL implementations for NNs, where all
tasks share parameters of all layers except the last one
or two layers, in our model, layer-wise neuron sharing
occurs only in the first few layers. The experiment
results show that, on the one hand, it is necessary
to increase the number of shared layers to enhance
the regularization strength induced by the articulatory
information to help avoid overfitting, and on the other
hand, deep layers (more than 3 layers) may not be able
to capture the abstract or composite representations of
the articulatory features.

2) Instead of the FFNs, a more complex structure, like the
TDNNs, is adopted in our framework. We have modified

TABLE II
THE PHONEME SEQUENCE AND ITS CORRESPONDING MANNER, PLACE +
BACKNESS, PLACE + HEIGHT, AND PLACE + ROUNDEDNESS SEQUENCES,

TAKING THE CHINESE PHRASE “我們” (WE) FOR EXAMPLE.

phrase 我我我們們們 (we)

phoneme u o m er nn

manner vowel vowel nasal vowel vowel

place +
backness back back bilabial back front

place +
height high middle

high bilabial middle
high

middle
high

place +
roundedness rounded rounded bilabial unrounded unrounded

the nnet3 setup [12] to optimize multiple objectives si-
multaneously. The modification can be easily introduced
into other models, such as the long short-term memory
with TDNN (TDNN-LSTM) and TDNN-F [13, 14].

3) Unlike the treatment of articulatory labels in [8], we
consider the exclusive and non-exclusive properties be-
tween the articulatory attributes. We split the attributes
into four blocks (we use blocks instead of groups in
this paper because each group corresponds to a block in
the output layer) so that the attributes in each block are
certainly exclusive. This makes the model discriminative
among competing attributes in each block [15, 16].

The remainder of this paper is organized as follows. In
Section II, we introduce he articulatory attributes with respect
to the Mandarin phoneme set. Then, Section III illustrates
the mechanisms of MTL-TDNN, single-task learning (STL)-
TDNN, and several variants of MTL-TDNN. In Section IV,
we evaluate the baseline MTL-DNN model and our framework
on the phoneme recognition and LVCSR tasks. Finally, we
provide concluding remarks and future work in Section V.

II. ARTICULATORY ATTRIBUTES

Globalization brings the need for second language learning
in recent years. The articulatory attributes from an articula-
tory model are considered as a good feedback to non-native
language learners in computer-assisted pronunciation training
(CAPT) [17, 18]. Articulatory models can be categorized into
geometrical [19–22] and biomechanical [23, 24] types. In this
paper, we focus on the geometrical model. In a geometrical
model, the vocal tract is represented by its initial geometry,
and a set of parameters estimated from the electromagnetic
articulography (EMA) data directly deforms this geometry.
It has been proved helpful in many areas, such as speech
therapy [25], speech comprehension improvement [26] and
pronunciation perceptual training [27].

In this study, we use the phone-based symbols to represent
the phoneme set, which is a subset of International Phonetic
Alphabet (IPA) and only contains Mandarin phonemes [28].
The attributes of speech can be comprehended by a collection
of information from fundamental speech sounds. We use the
place and manner attributes of each phone. The place attributes
identify the place, location, spot and mouth organs involved in
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tdnn (-1, 0, 1)

tdnn (-1, 0, 1)

tdnn (-3, 0, 3)

tdnn (-2, -1, 0, 1, 2)

tdnn (-6, -3, 0)

fc

acoustic features

triphone-states

Fig. 1. The architecture of STL-TDNN, where “tdnn (·)” denotes the infor-
mation about splicing indices of the TDNN-based layer, and “fc” denotes the
fully-connected layer.

the triggering and production of speech sounds. The manner
attributes describe the manner in which these mouth organs
trigger or produce speech sounds. The phoneticians sum up
the 21 phonological features (attributes), which are listed in
Table I. We split these attributes into four blocks so that the
attributes in each block are exclusive, that is, only one attribute
is labeled as 1 and the other attributes are labeled as 0 in
a block. Therefore, we apply the softmax function and the
categorical cross-entropy loss function in each block of the
subtask output layer in our DNN model instead of the simple
multi-label layer in [8].

We prepare four kinds of articulatory transcriptions: namely
manner, place + backness, place + height, and place + round-
edness, to represent all attributes [15, 16]. The three types of
the place attributes are identical if the phone is a consonant.
If the phone is a vowel, the attributes only label the place of
tongue (backness and height) and the roundedness, because
these attributes provide sufficient clues to distinguish vowels.
Table II gives an example of the attribute labels mapped from
the phone labels.

III. MULTI-TASK LEARNING

Multi-task learning (MTL) is a machine learning technique
that improves single-task learning (STL) by training the model
with several related tasks using a shared representation [29].
The effectiveness of MTL depends on the relationship between
individual tasks and the shared learning structure across tasks.

One aspect of the effectiveness of subtask learning, which
is similar to the dropout strategy and sparse penalty in a sense,
can be explained as a regularization to avoid over-fitting [30].
As a result, MTL is effective especially when the training data
is limited, in which case the over-fitting problem is more likely
to occur. By adding additional articulatory attribute targets,
subtasks weaken the excessive dependence between the model
and the primary task. Subtask learning can also improve the
model performance by applying additional information, such
as accent and speaker. Taking MTL-DNN as an example,
subtask learning increases the discrimination of the hidden
layer outputs on these additional tasks, which leads to a more
discriminative hidden layer for the primary classification task.

tdnn (-1, 0, 1)

tdnn (-1, 0, 1)

tdnn (-3, 0, 3)

tdnn (-2, -1, 0, 1, 2)

tdnn (-6, -3, 0)

fc

fc fc

manner

fc fc

acoustic features

place +
roundedness

place +
height

place +
backness triphone-states

Fig. 2. The architecture of MTL-TDNN-A, where the four subtasks for
classifying articulatory attributes are respectively added after the penultimate
layer of STL-TDNN in Fig. 1. Note that the five tasks share almost all hidden
layers.

A. Using attribute classification as the subtasks

In a conventional DNN-based acoustic model, based on
which a triphone-state classification task is performed to
provide the posteriors of the triphone states for the subse-
quent HMM decoder. Given an input vector x, the posterior
probability of the i-th triphone state s(p)i from the output layer
is computed using the softmax function as follows:

P (s
(p)
i |x) =

exp(y
(p)
i )∑N(p)

j=1 exp(y
(p)
j )

,∀i = 1, ..., N (p), (1)

where y(p)i denotes the i-th output of the triphone-state classi-
fication task, and N (p) is the number of triphone states, which
is 4,464 in this paper.

When using multi-task learning, we consider the triphone-
state classification as the primary task, and use the attribute
classification as the subtasks. By forced alignment with a pre-
trained phone-based GMM model, each frame of a training
speech utterance is labeled with the phone and the articulatory
attributes. As mentioned above, these attributes are divided
into 4 blocks: namely manner, place + backness, place + height
and place + roundedness, each with 6, 10, 11, and 9 attributes.
Given an input vector x, the posterior of the i-th attribute for
each subtask is also computed using the softmax function as
follows:

P (s
(a)
i |x) =

exp(y
(a)
i )∑N(a)

j=1 exp(y
(a)
j )

,∀i = 1, ..., N (a), (2)

where y(a)i denotes the i-th output of the attribute classification
subtask, and and N (a) is the number of the attributes in the
subtask.

We use the cross-entropy as the training criterion. The cross-
entropy of the primary task (or a substask) is calculated as
follows:

E(·) =
∑
x

N(·)∑
i=1

d
(·)
i logP (s

(·)
i |x), (3)
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where di denotes the target value of the i-th triphone state
(or attribute), which is 1 when x belongs to the i-th triphone
state (or attribute) and is 0 otherwise, and N is the number of
triphone states (or attributes). E(p) is the cross-entropy of the
primary task, and E(a1), E(a2), E(a3), and E(a4) are the cross-
entropy of the four subtasks, respectively. The cross-entropy of
the overall attribute classification subtask E(a) is the average
loss of the four attribute layers:

E(a) =
1

4
(E(a1) + E(a2) + E(a3) + E(a4)). (4)

Finally, the MTL-DNN is trained by minimizing the weighted
summation of E(p) and E(a):

E = (1− α)E(p) + αE(a), (5)

where α is the weight that controls the proportion of gradient
calculated from the secondary task.

B. Time-delay neural networks (TDNNs)

In our MTL-DNN architectures, we use the time-delay
neural network (TDNN) [10, 11] as the hidden layers. When
processing a wider temporal context, in a standard DNN,
the initial layer learns an affine transform for the entire
temporal context. However, in a TDNN architecture, the initial
transforms are learned on narrow contexts and the deeper
layers process the hidden activations from a wider temporal
context. Hence, the higher layers have the ability to learn wider
temporal relationships. Each layer in a TDNN operates at a
different temporal width, increasing with higher layers of the
network.

In a typical TDNN, hidden activations are computed at
all time steps. However there are large overlaps between
input contexts of activations computed at neighboring time
steps. Under the assumption that neighboring activations are
correlated, they can be sub-sampled.

Fig. 1 shows the STL-TDNN architecture. There are 6
hidden layers, including 5 TDNN-based layers and 1 fully-
connected layer. The layer-wise context shows the information
about sub-sampling splicing indices of TDNN-based layers.
For example, the first TDNN-based layer is fairly typical,
which splices together frames (t−2) through (t+2) at the input
layer. The third layer splices sub-sampling contexts, including
(t− 3), t and (t+ 3) vectors output by the previous layer.

We propose two types of MTL-TDNN architectures. MTL-
TDNN-A (Fig. 2) is the conventional architecture, which
directly adds the attribute classification subtasks to STL-
TDNN. We modify the MTL-TDNN-A architecture to MTL-
TDNN-B (Fig. 3). The attribute layers connect to the third
TDNN layer. In sight of regularization, training the substasks
will affect the output of the shared hidden layers by back
propagation. In TDNN, each layer outputs a sequence of
feature vectors. The feature vectors computed by the lower
TDNN layers are raw, while the feature vectors computed by
the higher layers contain more triphone-state information. We
connect the substask layers to a lower layer in order to affect
the raw feature vectors directly. It can increase the effect of
regularization in MTL-TDNN.

tdnn (-1, 0, 1)

tdnn (-1, 0, 1)

tdnn (-3, 0, 3)

tdnn (-2, -1, 0, 1, 2)

tdnn (-6, -3, 0)

fc

fc fc

manner

fc fc

acoustic features

place +
roundedness

place +
height

place +
backness triphone-states

Fig. 3. The architecture of MTL-TDNN-B, where the four subtasks are
connected to the third hidden layer. It means that the parameters of the
following higher hidden layers are only affected by the loss from the triphone-
state classification layer in the training phase.

IV. EXPERIMENTS

A. Corpora

1) MATBN: MATBN is a publicly available Mandarin
Chinese broadcast news corpus collected by the Academia
Sinica and the Public Television Service Foundation of Taiwan
between November 2001 and April 2003, which has been
segmented into separate stories and transcribed manually [31].
Each story contains the speech of one studio anchor, as well
as several field reporters and interviewees. In our experiments,
we used a subset of 25-hour speech data to train the acoustic
models and tested them on two testing sets, namely dev and
test, each consisting of 1.4 hours of speech. We performed
LVCSR experiments on the MATBN corpus and evaluated the
performance in terms of the character error rate (CER).

2) TCC-300: TCC-300 is a collection of microphone
speech provided by 3 universities in Taiwan : NTU, NCKU
and NCTU [32]. The speech data from each university were
recorded by 100 speakers (50 males and 50 females). In the
NTU corpus, the recording script has been carefully designed,
considering the syllables in a large text corpus and their
frequencies. It contains 6,509 utterances, 52,218 syllables,
and 141,536 phones. We evaluated the acoustic models by
conducting free syllable/phone decoding without language
model constraints on the TCC-300 corpus.

3) Lexicon and language model: The lexicon contains
91,573 Chinese words, including 66,290 words from the
CKIP2 lexicon, 5,404 words extracted automatically from the
Central News Agency (CNA) news stories in 2001 and 2002
in Chinese Gigaword [33], and 19,879 words from Word
List with Accumulated Word Frequency in Sinica Corpus3

(WLWAWFS 3.0). The word-based trigram language model
was trained with Kneser-Ney backoff smoothing using the

2http://ckip.iis.sinica.edu.tw/CKIP/engversion/20corpus.htm
3http://elearning.ling.sinica.edu.tw/eng jindai.html
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Fig. 4. The training history of attribute classification in MTL-TDNN-B, where each subplot shows the training and validation accuracies with respect to
training iterations. Note that the validation set contains 300 utterances excerpted from the training set.

TABLE III
CHARACTER ERROR RATES (%) FOR TWO BASELINES (STL-TDNN AND
MTL-TDNN-ML) AND OUR PROPOSED MODELS (MTL-TDNN-A AND

MTL-TDNN-B) EVALUATED ON MATBN. (2) AND (3) AFTER
MTL-TDNN-B DENOTE THE NUMBER OF SHARED HIDDEN LAYERS.

+sMBR

Model dev test dev test

STL-TDNN 7.49 7.39 7.45 7.44

MTL-TDNN-ML 7.68 7.65 7.69 7.64

MTL-TDNN-A 7.26 7.36 7.25 7.36

MTL-TDNN-B (2) 7.31 7.3 7.29 7.28

MTL-TDNN-B (3) 7.24 7.3 7.2 7.31

SRILM toolkit [34]. The textual training corpus was compiled
from the CNA news stories from 2006 to 2010 in Chinese
Gigaword.

B. Units for acoustic modeling

In Mandarin speech recognition, the initial-final with tone
phonetic alphabet (e.g., Formosa Phonetic Alphabet, ForPA)
is commonly used as the phonetic units for acoustic modeling
[35]. However, in order to fetch the articulatory attributes cor-
responding to each phone, we used the phone set derived from
International Phonetic Alphabet (IPA) for Mandarin speech
[28]. We added the tonal symbols to the vowel phonemes.

C. Input features

To extract acoustic features, spectral analysis was applied
to a 25 ms frame of speech waveform every 10 ms. For
each frame, 40 high-resolution MFCCs, derived by DCT con-
ducted on 40 Mel-frequency bins and normalized by utterance-
based mean subtraction, were used as the input to the NN-
based acoustic models. Since Mandarin is a tonal language, 3
pitch-related features were concatenated to the 40-dimensional
MFCCs [36] for the Mandarin ASR task. Moreover, we
appended a 100-dimensional i-vector to each acoustic frame.

D. Baseline systems

The GMM-HMM system was pre-trained to generate re-
liable frame-to-state (or pdf-id) alignments for subsequent
neural network training. We used the fifth round triphone

TABLE IV
SYLLABLE ERROR RATES (SER) AND PHONE ERROR RATES (PER) FOR

STL-TDNN AND OUR PROPOSED MODELS (MTL-TDNN-A AND
MTL-TDNN-B) EVALUATED ON TCC-300. THE FIRST THREE HIDDEN

LAYERS ARE SHARED IN MTL-TDNN-B.

Model SER (%) PER (%)

STL-TDNN 26.05 15.88

MTL-TDNN-A 25.42 14.97

MTL-TDNN-B 24.47 14.94

system (i.e., tri54) to decode and generate the alignments
for each utterance.

One of our baseline systems was STL-TDNN built with 6
hidden layers, each containing 650 hidden nodes. The output
layer was a softmax-activated layer with 4,464 nodes for
MATBN, and the maximum change in the parameters per
mini-batch was set to 1.5. The mini-batch sizes were 256
and 128. The initial and final effective learning rates were set
to 0.0015 and 0.00015, respectively, and the total number of
training epochs was set to 3, while additional 4 training epochs
were used for fine tuning by state-level minimum Bayes risk
(sMBR). [37]

Another baseline is the MTL-TDNN system, named MTL-
TDNN-ML, which used a single multi-label classification
subtask in multi-task learning. Here the number of output
nodes of the substask is 21 because there are 21 unique
articulatory attributes in total.

E. Proposed systems

Both MTL-TDNN-A and MTL-TDNN-B contain 150 hid-
den nodes before each attribute layer block. The weight α was
set to 10−6. The other hyper-parameters were the same as the
baseline systems.

F. Results

Table III shows the character error rates (CER) achieved
by STL-TDNN and three MTL-TDNN systems evaluated on
MATBN. Compared to the STL-TDNN baseline system, the
traditional MTL-TDNN-ML system did not gain any im-
provements. In contrast, the proposed MTL-TDNN-A system
achieved relative error rate reductions of 3% and 0.4% on
the dev and test sets, respectively. The MTL-TDNN-B (3)

4https://github.com/kaldi-asr/kaldi/blob/master/egs/formosa/s5/run.sh
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system achieved relative error rate reductions of 3.3% and
1.2% on dev and test, respectively. MTL-TDNN-B slightly
outperformed MTL-TDNN-A. When the number of shared
hidden layers in MTL-TDNN-B was reduced from 3 to 2, the
performance was slightly degraded. Surprisingly, the sMBR
fine tuning did not consistently improve these four models.

Compared to MTL-TDNN-ML, MTL-TDNN-A achieved
relative error rate reductions of 5.5% and 3.8% on dev
and test, respectively. MTL-TDNN-B (3) achieved relative
error rate reductions of 5.7% and 4.6% on dev and test,
respectively. The experimental results confirm the advantage of
dividing the articulartory attributes into four exclusive blocks.
The results also confirm our assumption that we should share
only the first few layers in multi-task learning because the
articulatory information associated with the physical process
is not as abstract and composite as the phonetic descriptions.

The training histories of the four subtasks are showed in
Fig. 4. The validation accuracies of the manner, place +
backness, place + height, and place + roundedness subtasks
are 0.951, 0.913, 0.84, and 0.88, respectively. Although α is
relatively small, it still helps to yield good performance in the
articulartory attribute classification subtasks.

Table IV shows the syllable error rates and the phone error
rates of the free syllable/phone decoding experiments on the
TCC-300 corpus. Tone errors were ignored because the ar-
ticulatory attributes were not concerned with the difference in
tone. Compared to the STL-TDNN baseline system, the MTL-
TDNN-A system achieved relative reductions of 2.4% and
5.7% in terms of syllable and phone error rates, respectively.
The MTL-TDNN-B system achieved relative reductions of
6.1% and 5.9% in terms of syllable and phone error rates,
respectively. The number of shared hidden layers in MTL-
TDNN-B was set to 3 in this experiment. The experimental
results reaffirm the appropriateness of sharing only the first
few layers of the neural network in multi-task learning.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed two MTL-TDNN archi-
tectures for acoustic modeling, which are trained by adding
four articulatory attribute classification subtasks in multi-task
learning. We split the articulatory attributes into four blocks
to perform four classification subtasks separately, instead of
directly performing a single multi-label classification subtask.
We have evaluated the proposed framework on the MATBN
Mandarin Chinese LVCSR task and the TCC-300 Mandarin
free syllable/phone decoding task. MTL-TDNN-ML (using a
single multi-label classification subtask in multi-task learning)
did not enhance the performance compared with STL-TDNN
(the single-task learning counterpart of MTL-TDNN). The
proposed models MTL-TDNN-A and MTL-TDNN-B achieved
relative error rate reductions, although not very significant.
MTL-TDNN-B performed best in the ASR experiments and
also performed well in attribute classification.

As future directions, we will experiment with other corpora
in English or other languages. With the IPA phoneme set,
which can present all phones in different languages, our

system can be used in cross-language LVCSR. We will also
implement the MTL-TDNN models on the Kaldi chain
setup. In addition, articulatory information not only improves
the LVCSR task but may also be useful in the CAPT field for
mispronunciation detection and diagnosis.
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