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Abstract—Spoofing is one of the threats that bypass the voice
biometrics and gains the access to the system. In particular, Auto-
matic Speaker Verification (ASV) system is vulnerable to various
kinds of spoofing attacks. This paper is an extension of our
earlier work, the combination of different speech demodulation
techniques, such as Hilbert Transform (HT), Energy Separation
Algorithm (ESA), and its Variable length version (VESA) is
investigated for replay Spoof Speech Detection (SSD) task. In
particular, the feature sets are developed using Instantaneous
Amplitude and Instantaneous Frequency (IA-IF) components of
narrowband filtered speech signals obtained from linearly-spaced
Gabor filterbank. We observed relative effectiveness of these
demodulation techniques on two spoof speech databases, i.e.,
BTAS 2016 and ASVspoof 2017 version 2.0 challenge database
that focus on the presentation and replay attacks, respectively.
The results obtained from different demodulation techniques gave
comparable results on both databases showing small variations
in % Equal Error Rate (EER). For VESA, we found that with
Dependency Index (DI) = 2 gave relatively better performance
compared to the other DI on both the databases for SSD task.
All the demodulation technique-based feature sets gave lower %
EER than their baseline system for both the databases.
Index Terms: Spoof, Presentation Attack, Hilbert Transform,
Teager Energy Operator.

I. INTRODUCTION

Automatic Speaker Verification (ASV) system grants access
to the system by verifying the claimed identity of speaker.
However, due to recent advances in technology, the claimed
identity could be generated by malicious means or other
resources. The resources include different ways of speech
generation also known as the spoofing attacks, i.e., voice
conversion (VC), speech synthesis (SS), replay, twins, and
impersonation [1], [2], [3]. The present advanced technology
demands for more robust ASV systems to the spoofing at-
tacks to sustain the technology race. The awareness of the
Spoof Speech Detection (SSD) task and its countermeasures
was widely spread throughout the globe with the help of
ASVspoof 2013 special session [1]. The successor ASVspoof
2015 challenge has focused on the countermeasures for the
machine generated speech, such as VC and SS [4]. Recording
and playback of the target speaker’s speech sample is the
easiest way that any fraud person can prefer to break the
ASV system [5]. This attack is known as the replay attack

and it poses the highest threat due to its easy implementation.
The Biometrics: Theory, Applications, and Systems (BTAS)
2016 Speaker Anti-Spoofing competition and ASVspoof 2017
challenge have focused on the replay detection.

The BTAS 2016 competition used the AVspoof database
that consists of replayed speech signals of natural and ma-
chine generated (i.e., SS and VC) signals using intermediate
devices, such as high quality speakers, laptop speakers, and
mobile phones [6]. Whereas, the ASVspoof 2017 challenge
database contains the replay spoof signals that are recorded
using different recording and playback devices in different
uncontrolled real acoustic environments [7]. Several counter-
measures were designed and submitted by participants in both
challenges. Some of the countermeasures for BTAS 2016 used
Mel Frequency Cepstral Coefficients (MFCC), Inverse Mel
Frequency Cepstral Coefficients (IMFCC), and normalized
perceptual linear predictive features as front-end feature sets.
The organizers of the BTAS 2016 competition provided a
baseline using simple spectrogram-based ratios as features and
logistic regression as classifier [8].

For ASVspoof 2017 challenge, Constant-Q Cepstral Coef-
ficients (CQCC) with Gaussian Mixture Models (GMM) clas-
sifier is provided as baseline by the challenge organizers [9],
[10]. Some of the countermeasures includes the normalization
techniques and various acoustic features [11]. Instantaneous
Frequency (IF)-based features were explored in [12], [13].
Also, high-resolution temporal-based features such as, Single
Frequency Filtering (SFF) [14], high frequency band selection
of CQCC [15], modulation dynamic features, and tempo-
ral modulation features [16], [17], were used for designing
the countermeasures. Neural Network (NN)-based classifiers,
such as Deep Neural Networks (DNN), Convolutional Neural
Networks (CNN), Bi-directional Long Short Term Memory
(BLSTM) [18], [19], [14] were also explored in the challenge.

In this paper, we are exploring our earlier speech demod-
ulation techniques- based on Instantaneous Amplitude and
Instantaneous Frequency (IA-IF) components for two different
databases, i.e., ASVspoof 2017 challenge version 2.0 (v2.0)
(for replay classification), and BTAS 2016 database (for pre-
sentation attack detection). In particular, Hilbert Transform
(HT), Energy Separation Algorithm (ESA) and its Variable
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Fig. 1. Block diagram for feature extraction of IA and IF-based features using HT, ESA, and VESA.

length version (VESA) are studied to compute their IA and IF
components obtained from narrowband signals for SSD task.

II. SPEECH DEMODULATION-BASED FEATURES

The Amplitude and Frequency Modulations features (AM-
FM) computed using three different demodulation techniques,
such as HT, ESA, and VESA are discussed in this section.

A. Hilbert Transform (HT):

The Hilbert transform estimates amplitude envelope and
frequency function of a speech signal [20], [21]. Let sa(t)
be the analytic signal corresponding to the real signal, s(t),
then sa(t) is given by:

sa(t) = s(t) + jŝ(t), (1)

where quadrature signal ŝ(t) is the Hilbert transform of s(t)
and φ(t) represents the phase. The Instantaneous Amplitude
(IA), ah(t), and Instantaneous Frequency (IF), φ′h(t), are
derived from the analytic signal as:

IAHT = ah(t) =
√
s2(t) + ŝ2(t), (2)

IFHT = φ′h(t) =
d

dt
(φ(t)). (3)

B. Energy Separation Algorithm (ESA):

For a discrete-time monocomponent signal, x[n], the Teager
Energy Operator (TEO), Ψd{·}, is defined as [22], [23]:

En = Ψd{x[n]} = x2[n]− x[n− 1]x[n+ 1] ≈ A2Ω2, (4)

where En gives the running estimate of signal’s energy, A is
amplitude and Ω is frequency (in radians). The speech signal
can be considered as the combination of several monocom-
ponent signals and TEO works on narrowband signal. Hence,
bandpass filtering is necessary to apply on the input speech
signal to compute ‘N’ number of subband filtered signals. The
Teager energy obtained from the subband signals are further
separated into IA (ai[n]) and IF (Ωi[n]) components for the

ith subband filtered signal, using Energy Separation Algorithm
(ESA) and it is given as [24], [25], [26]:

IAESA = ai[n] ≈ 2Ψd{xi[n]}√
Ψd{xi[n+ 1]− xi[n− 1]}

, (5)

IFESA = Ωi[n] ≈ arcsin

√
Ψd{xi[n+ 1]− xi[n− 1]}

4Ψd{xi[n]}
.

(6)

C. Variable length Energy Separation Algorithm (VESA):

The TEO operates with 3 samples for a given instant of
time, i.e., x(n), x(n−1), and x(n+ 1). The generalized TEO
replaces 1 with a constant arbitrary integer k, i.e., varying
the samples of the past and future signal, i.e., x(n − k) and
x(n + k) [27], [28]. This constant arbitrary integer is known
as lag parameter (also known as Dependency Index (DI)) and
it can be varied from the value greater than 1 and thus, named
as Variable Teager Energy Operator (VTEO) which is given
as: [13], [29], [30], [31]

ΨDI{x(n)} = x2(n)− x(n− k)x(n+ k) ≈ k2A2Ω2. (7)

Similar to above ESA technique, we can compute the IA and
IF from VESA by replacing the VTEO in the place of TEO,
i.e., as:

IAV ESA = ai[n] ≈ 2ΨDI{xi[n]}√
ΨDI{xi[n+ 1]− xi[n− 1]}

, (8)

IFV ESA = Ωi[n] ≈ arcsin

√
ΨDI{xi[n+ 1]− xi[n− 1]}

4ΨDI{xi[n]}
.

(9)
The block diagram of speech demodulation technique-based
features are shown in Figure 1. The IA and IF component-
based feature sets proposed in the earlier studies are reported
in [13], [26], [31], [32]. Initially, signal is passed through
the pre-emphasis filter, and then passed through the filterbank
to obtain N number of subband signals [23], [24], [33]. We
used linearly-spaced Gabor filterbank to have almost equal
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Fig. 2. Varying DI from 1 to 4 on development set of (a) ASVspoof 2017 challenge v2.0, and (b) BTAS 2016 competition database.

bandwidth to cover the entire frequency range [26], [31], [34].
Furthermore, these subband filtered signals are given as input
to the HT, ESA, and VESA block to compute corresponding
IA and IF components. These individual IA and IF components
are passed through the frame blocking and averaging using a
short window length of 20 ms with a shift of 10 ms followed
by logarithm operation to compress the data. The Discrete
Cosine Transform (DCT) and Cepstral Mean Normalization
(CMN) technique is then applied for energy compaction and
retained first few DCT coefficients to obtain HT, ESA, and
VESA-based IA and IF Cepstral Coefficients i.e., (IACC and
IFCC), followed by their ∆ and ∆∆ feature vector to obtain
higher-dimensional feature vector.

The spectral energy density obtained from all the three
speech demodulation techniques are shown in Figure 3 for
a time-domain speech signal (a). The corresponding spectral
energy for HT is shown in Figure 3(b), for ESA it is shown
in Figure 3(c), and for VESA it is shown in Figure 3(d).
The highlighted dotted box in the Figure 3 shows the spectral
differences for all the three different techniques. With VESA-
based spectral energy it can be observed that the high res-
olution for the harmonics and frequency bands in the lower
frequency region is obtained.

D. Databases Used

In this section, we provide the details of databases used, the
evaluation metrics, feature parameters along with classifier.

1) ASVspoof 2017 Challenge v2.0 Database: The
ASVspoof 2017 challenge v2.0 database mainly depends on
the RedDots corpus, and its replayed speech [9], [35]. The
organizers of ASVspoof 2017 challenge provided a baseline
system using CQCC as features and GMM as classifier. The
detailed statistics of the database is given in [9], [36], [37].

2) BTAS 2016 Database: The BTAS 2016 database is based
on the publicly available AVspoof database [6]. We have
used the same database that was provided in the BTAS 2016
competition . The organizers of the BTAS 2016 competition
provided a baseline system using simple spectrogram-based
ratios as features and logistic regression as classifier. The
detailed statistics of the database is given in [8].

E. Evaluation Metrics

The evaluation metrics considered in this paper are accord-
ing to the protocol used in the BTAS 2016 speaker anti-

Fig. 3. (a) Time-domain speech signal, and its corresponding spectral energy
densities using (b) HT, (c) ESA, and (d) VESA with DI=2.

spoofing challenge. The results on the development data are
reported in terms of Equal Error Rate (% EER) and on the
test data in terms of Half Total Error Rate (% HTER).

The evaluation of the replay attacks systems was based on
the false rejection rate (FRR) and false acceptance rate (FAR),
that in turn depend on a threshold θ. We use the development
set to determine threshold θdev . The evaluation performance
of the system is then computed as the HTER given as :

θdev = arg min
θ

FARdev(θ) + FRRdev(θ)
2

, (10)

HTEReval(θ) =
FAReval(θdev) + FRReval(θdev)

2
. (11)

F. Features and Classifier

For the experimentation, we have used IACC and IFCC
each of which extracted using HT, ESA and VESA-based
approaches. The features are extracted using 40 linearly-
spaced Gabor filterbank with fmin = 10 Hz, and fmax =
8000 Hz. For each subband filtered signals, we obtained 40
- dimensional (D) static features appended with their ∆ and
∆∆ coefficients resulting in 120 - dimensional (D) feature
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vector which are used as features for our SSD system.
For the classification of natural vs. replayed speech, we

have used the GMM as the classfier [38]. For experiments
performed on the ASVspoof 2017 challenge v2.0 database,
512 Gaussian mixtures are used whereas 64 Gaussian mixtures
are used for BTAS 2016 challenge due to computational
complexities resulting from huge data provided in training set
for BTAS 2016 challenge.

III. EXPERIMENTAL RESULTS

A. VESA-based Results with Varying DI

The results with varying the lag parameter also called as
Dependency Index (DI) from 1 to 4 on development set for
VESA-IACC and VESA-IFCC feature set on both databases
(i.e., (a) ASVspoof 2017 challenge v2.0 and (b) BTAS 2016
competition are shown in Figure 2). It can be observed that
both IA and IF-based feature sets gave lower % EER at
DI=2 on both databases. On ASVspoof 2017 challenge v2.0
database, the % EER varies from 7.31 % to 8.04 % for IA-
based features whereas for IF-based features it varies from
20.36 % to 25.27 %. On the other hand, for BTAS 2016
database, the variation is from 2.31 % to 2.59 % and from
5.3 % to 6.14 % for IA and IF-based features, respectively.
Hence, for further set of experiments reported in this paper
VESA-based features are extracted using DI=2.

B. Results on Development Set

Results on all the speech demodulation techniques for both
ASVspoof 2017 challenge v2.0 and BTAS 2016 database
are reported in Table I and Table II, respectively. It can be
observed that on development set, HT-based features gave
lower % EER, whereas, for evaluation set VESA-based fea-
tures gave better performance that other two demodulation
techniques. However, on BTAS database the results varies
for all the speech demodulation techniques with very less
differences in % EER. The advantage of VESA over ESA
lies in its superior localization and approximation to track the
instantaneous fluctuations (if any) of the energy at a given
instant of time. The VESA brings out the hidden dependencies
and dynamics of the signal w.r.t. distantly located speech
samples than only immediate adjacent samples.

TABLE I
RESULTS OF IACC AND IFCC FEATURE SETS USING HT, ESA, AND

VESA ON ASVSPOOF 2017 CHALLENGE V2.0 DATABASE (IN % EER)

IACC IFCC
Dev Eval Dev Eval

HT 7.16 12.58 18.86 30.18
ESA 7.99 13.45 24.07 19.87

VESA (DI=2) 7.31 12.57 20.36 19.10

To obtain the possible complimentary information between
two feature sets, we used score-level fusion of two feature set
obtained from same demodulation techniques. For example,
the IA and IF components extracted from HT-based method
are fused together to obtain the reduced % EER and give high

TABLE II
RESULTS OF IACC AND IFCC FEATURE SETS USING HT, ESA, AND

VESA ON BTAS 2016 DATABASE (IN % EER)

IACC IFCC
Dev Eval Dev Eval

HT 2.26 3.96 5.26 7.46
ESA 2.36 4.31 5.08 9.23

VESA (DI=2) 2.31 4.73 5.31 9.13

performance. It can be observed from Table III that with score-
level fusion, on both the databases we reduced the % EER
from its individual % EER. We compared our ASVspoof 2017
challenge v2.0 results with the baseline system of the same
database, i.e., CQCC feature set. The baseline system gave %
EER of 12.81 % and 19.04 % on development and evaluation
set, respectively. The best % EER obtained on development set
is with HT-based method giving an % EER of 5.91 %, and on
evaluation set the lower % EER is obtained with VESA-based
technique resulting in 11.45 %

TABLE III
RESULTS OF SCORE-LEVEL FUSION OF IACC AND IFCC FEATURE SETS

USING HT, ESA, AND VESA ON ASVSPOOF 2017 V2.0 AND BTAS 2016
DATABASE (IN % EER)

ASVspoof 2017 v2.0 BTAS 2016
Dev Eval Dev Eval

CQCC (Baseline) 12.81 19.04 – –
HT 5.91 12.13 2.26 3.93

ESA 7.72 12.17 2.36 4.31
VESA (DI=2) 6.99 11.45 5.31 4.73

Table IV shows the performance on evaluation set in %
HTER on BTAS 2016 database and compared our results with
the baseline system. The baseline system gave an % HTER of
6.87 % and the best performance of our speech demodulation
technique obtain an % HTER of 3.17 % with IA component
obtained from HT-based technique. The performance is also

TABLE IV
% HTER FOR EVAL SET OF BTAS 2016

System Used % HTER
Baseline 6.87
HT-IACC 3.17
HT-IFCC 6.74

ESA-IACC 3.64
ESA-IFCC 7.59

VESA-IACC (DI=2) 4.06
VESA-IFCC (DI=2) 7.14

shown by the Detection Error Trade-off (DET) curve in Figure
4 on (a) development and (b) evaluation set of ASVspoof
2017 challenge v2.0 database. The DET curves are shown
only for the score-level fusion of IA and IF components of
individual demodulation techniques i.e., HT, ESA, and VESA,
respectively. It can be observed from the DET curves for
development set that HT-based technique gave lower % EER
with less miss probability and false alarm rate. However, for
the evaluation set, the HT technique did not perform well and
with VESA method it performed better. This fluctuations in
the performance brings out more generalized countermeasure
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for SSD task. Note: we have not shown the DET curves for
BTAS 2016 database results because the score-level fusion did
not reduce the % EER from the individual IA-based results.

Fig. 4. DET curves of score-level fusion of IACC and IFCC on (a) dev and
(b) eval set of ASVspoof 2017 challenge v2.0 database.

IV. SUMMARY AND CONCLUSIONS

In this paper, we analyzed and studied different speech
demodulation techniques, namely, Hilbert Transform (HT),
Energy Separation Algorithm (ESA), and Variable length
version of ES, i.e., VESA. The speech demodulation-based
features are used for spoof speech detection task, to classify
the replay and presentation attack from natural speech. We
investigated the advantage of VESA over HT and ESA by
varying the Dependency Index (DI) to capture the hidden de-
pendencies and dynamics. The features obtained from different
demodulation techniques gave better results than the baseline
system of both ASVspoof 2017 challenge v2.0 and BTAS 2016
database. Furthermore, the score-level fusion is performed on
both IA and IF components to capture the possible significant
complementary information of each other and reduced the %
EER further than the individual systems.
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