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Abstract—Monaural singing voice separation has received
much attention in recent years. In this paper, we propose a
novel neural network architecture for monaural singing voice
separation, Fusion-Net, which is combining U-Net with the
residual convolutional neural network to develop a much deeper
neural network architecture with summation-based skip connec-
tions. In addition, we apply time-frequency masking to improve
the separation results. Finally, we integrate the phase spectra
with magnitude spectra as the post-processing to optimize the
separated singing voice from the mixture music. Experimental
results demonstrate that the proposed method can achieve better
separation performance than the previous U-Net architecture on
the ccMixter database.

I. INTRODUCTION

Over the past several decades, monaural singing voice
separation has become a hot research topic in the context of
audio signal processing [1] [2]. The target is to separate an
individual singing voice from the musical mixture. It has a
wide range of applications such as music information retrieval
(MIR) [3], singer identification [4], karaoke application [5],
and leading instrument detection [6]. Various approaches have
been introduced so far such as Non-negative Matrix Factor-
ization (NMF) [7] [8] [9], kernel additive modeling (KAM)
[10], Repeating Pattern Extraction Technique (REPET) [11],
Robust Principal Component Analysis (RPCA) [12], and the
combinations or deformations of those separation approaches
[13] [14]. However, the separation results of state-of-the-
art methods are still far behind human hearing capability.
The existing problems of singing voice separation are still
facing severe challenging [15] [16]. To obtain better sepa-
ration results, Yang [17] proposed a new algorithm called
multiple low-rank representation (MLRR) to decompose a
magnitude spectrogram into two low-rank matrices, which is
advantageous in that potentially more training database can be
harvested to improve the separation result. Deep learning [18]
[19] based monaural singing voice separation has been proven
the significant improvement in the separation performance than
the previous methods. Additionally, Convolutional Network
Network (CNN) architecture has been successful in audio
source separation, especially in singing voice separation [20]
[21] [22]. Chandna et al. [20] utilized the convolutional filters
specifically for audio database and allowed a significant gain
in processing time over a simple multi-layer perception, in
the fully connected layer, dimensional reduction allows the
model to learn a more compact representation of the input

Fig. 1. Block diagram of monaural singing voice separation system

data from which the source can be separated. Takahashi et al.
[21] extended DenseNet to tackle the music source separation
with the proposed MDenseNet architecture. In addition, he
[22] proposed another MMDenseLSTM framework for audio
source separation, which is a variant of CNN architecture. It
integrates long short-term memory (LSTM) in multiple scales
with skip connection to efficiently model long-term structures
within an audio context.

With the development of neural network architecture, the
separation performance based on CNN framework has also
obtained a better improvement, especially for U-Net [23]
architecture in singing voice separation task. It separates
singing voice from the mixture music database by using down-
sampling and up-sampling frameworks on the magnitude
spectrogram. The experiment results show this approach can
bring clear improvements over state-of-the-art approaches. The
benefits of low-level skip connections are demonstrated in
comparison to plain convolutional encoder-decoders. However,
there is still existing plenty of room for improving the separa-
tion performance by developing a much deeper neural network
than U-Net architecture.

Therefore, this work was inspired by U-Net architecture
for singing voice separation and utilized the FusionNet [24]
architecture, which was originally proposed to solve image
separation in connectomics. We utilized the summation-based
skip connections to develop a much deeper network architec-
ture, which can bring significant improvements in separation
performance in singing voice separation task. In addition, we
applied time-frequency masking to improve the separation
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Fig. 2. Proposed Fusion-Net architecture

results. Finally, we integrated the phase spectra feature with
magnitude spectra feature as the post-processing to optimize
the separated singing voice by using Fusion-Net architecture
from the mixture music database.

The block diagram of our proposed monaural singing voice
separation system can be seen in Fig. 1. For each of mixture
music on the test audio database, firstly, we applied the short-
time Fourier transform (STFT) to obtain the magnitude spectra
and phase spectra. Then, we explored the time-frequency
masking to further improve the separation results by using the
introduced Fusion-Net architecture on the magnitude spectro-
gram. Finally, we utilized the inverse STFT (ISTFT) between
the phase spectra and estimated magnitude spectra to obtain
the singing voice from the mixture music database.

The contributions of this paper can be summarized as
follows:

• A deep fully residual convolutional neural network was
introduced for monaural singing voice separation by
combining U-Net with the residual convolutional neural
network to develop a much deeper architecture with
summation-based skip connections.

• Using time-frequency masking for improving the sepa-
rated singing voice.

• integrating the phase spectra with magnitude spectra as
the post-processing. And comparing with the separation
results by proposed Fusion-Net and U-Net architectures
on the ccMixter database.

The remainder of this paper is structured as follows: In
Section II, we introduce the proposed method. Experiments
are conducted in Section III, and finally draw conclusions in
Section IV.

II. PROPOSED METHOD

In this section, we first introduce the proposed network
architecture and then explain its application to singing voice
separation with time-frequency masking.

A. Network Architecture

We explore a deep fully residual convolutional neural
network to develop a much deeper neural network than U-
Net architecture. Similar to Quan et al. [24] proposed the
FusionNet architecture, which is originally used for image
segmentation in connectomics. In this work, we propose the
Fusion-Net architecture for singing voice separation, which is
based on encoder (e.g., down-sampling: DS) and decoder (e.g.,
up-sampling: US). The framework of this architecture and each
of the blocks can be seen in Fig. 2, which presents the detail
realized process of the proposed Fusion-Net architecture.

For the fair comparison, the implementation of the proposed
Fusion-Net architecture is similar to [23]. Each of blocks in
DS consists of a strided 2D convolution, kernel size 5×5,
leaky rectified linear units (ReLU) with leakiness 0.2, and
batch normalization. During the process of DS, it contains
conv2d with stride 1, kernel size 5×5, residual layers, and
max-pooling. Meanwhile, each of block in US consists of
strided deconvolution with stride 2, kernel size 5×5, and batch
normalization. During the process of US, it contains a 2D
deconvolutional layer with stride 1 and kernel size 5×5, and
inverse residual layer. This model is trained by using the
ADAM optimizer [25].

In addition, the detail parameters about output and input
sizes in Fusion-Net architecture are described in Table I. The
important differences between U-Net and Fusion-Net are skip-
connection. U-Net adopts the concatenation of feature maps
via only the skip connection, while Fusion-Net uses a fully
residual network with summation-based skip connection in the
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TABLE I
ARCHITECTURE OF THE FUSION-NET

Funion-Net architecture
Down-sampling (DS) Up-sampling (US)

Blocks Input size Output size Blocks Input size Output size
DS1 512 × 128 × 1 256 × 64 × 16 US1 16 × 4 × 256 32 × 8 × 128
DS2 256 × 64 × 16 128 × 32 × 32 US2 32 × 8 × 128 64 × 16 × 64
DS3 128 × 32 × 32 64 × 16 × 64 US3 64 × 16 × 64 128 × 32 × 32
DS4 64 × 16 × 64 32 × 8 × 128 US4 128 × 32 × 32 256 × 64 × 16
DS5 32 × 8 × 128 16 × 4 × 256 US5 256 × 64 × 16 512 × 128 × 1
DS6 16 × 4 × 256 8 × 2 × 512 US6 512 × 128 × 1 512 × 128 × 1

TABLE II
NETWORK IN EACH OF BLOCKS.

DS(1-6) US(1-6)
Layers Layers
conv2d deconv2d

Max-Pooling deconv2d

Residual
Layer

conv2d Inverse
Residual

Layer

deconv2d
conv2d deconv2d
conv2d deconv2d

Max-Pooling deconv2d
conv2d

Max-Pooling

deeper network architecture. For example, DS6 and US1 are
summed up as the input feature in DS2.

The parameters of each of the blocks (DS and US) can be
seen in Table II. The DS is the process of down-sampling,
which is from DS1 to DS6. Meanwhile, the US is the process
of up-sampling, which is from US1 to US6. The residual
layer and inverse residual layer are included in the processes
of down-sampling and up-sampling, respectively. The right is
process of down-sampling section and the corresponding left is
process of up-sampling section in the Fusion-Net architecture.
Fig. 3 shows an example of the process of down-sampling
(e.g., DS6) and up-sampling (e.g., US1) in the Fusion-Net
architecture.

In this work, we adopt the training model with the predict
value of the network ŷi and the target value yi, the mean
values of loss function in the Fusion-Net architecture can be
defined as

L = ||ŷ1 − y1||+ ||ŷ2 − y2||; (1)

where ŷ1 and ŷ2 are the predict values of singing voice and
music, respectively.

B. Time-Frequency Masking

In order to improve the separation performance, after sepa-
rated by using Fusion-Net architecture, we further apply soft
time-frquency masking estimation to improve the separation
results. We define it as follows

ŷ1 =
ŷ1

ŷ1 + ŷ2
�X

ŷ2 =
ŷ2

ŷ1 + ŷ2
�X

(2)

where the operator � indicates the element-wise multiply
(Hadamard product), X is the value of magnitude spectra, ŷ1

and ŷ2 are the corresponding predict values of singing voice
and music, respectively.

In order to recover the singing voice and accompaniment by
using ISTFT, we combine phase spectra [26] with estimated
magnitude spectra Y . The phase spectra P can be defined as

P = angle(X); (3)

Therefore, the recovered spectrogram X̃ by combining
phase spectra and estimated magnitude spectra in the complex
coordinate can be obtained as

X̃ = Y � cos(P ) + i(Y � sin(P )), (4)

where the operator � indicates the element-wise multiply.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed Fusion-Net archi-
tecture on the ccMixter [13]1 database.

A. Experiment Setups

To confirm the effectiveness of separation performance
with the proposed Fusion-Net architecture, we evaluated it
on the ccMixter database, which consists of 50 tracks stereo
music songs. Each of tracks is ranging from 1’17” to 7’36”.
And they were sampled at 44.1 kHz. In this experiment, we
mainly research on monaural singing voice separation, which
is generally even more difficult than multichannel due to the
availability of only one channel. So, the two-channel stereo
mixture experiment databases were downmixed into a single
channel.

In this work, we used the experiment database as the ratio
of 3:1:1 on the training, validation and testing database, in
other words, 30 tracks for training, 10 tracks for validation,
and left 10 tracks for testing, respectively. The experiment
environments were run by using TensorFlow framework2 and
NVIDIA GeForce GTX 1080Ti with i7-6700K CPU@4.00
GHz.

We assessed its separation performance in terms of source-
to-distortion ratio (SDR), source-to-interference ratio (SIR),
source-to-artifact ratio (SAR), and normalized SDR (NSDR)

1https://members.loria.fr/ALiutkus/kam/
2https://www.tensorflow.org/
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Fig. 3. Process of down-sampling (e.g., DS6) and up-sampling (e.g., US1) in
Fusion-Net architecture.

by using the BSS-EVAL 3.0 metrics [27]3. The estimated
signal Ŝ(t) is defined as

Ŝ(t) = Starget(t) + Sinterf (t) + Sartif (t), (5)

where Starget(t) is the allowable deformation of the target
sound, Sinterf (t) is the allowable deformation of the sources
that account for the interferences of the undesired sources, and
Sartif (t) is an artifact term that may correspond to the artifact
of the separation method. The formulas for SDR, SIR, SAR,
and NSDR are defined as

SDR = 10 log10

∑
t Starget(t)

2∑
t (Sinterf (t) + Sartif (t))

2 , (6)

SIR = 10 log10

∑
t Starget(t)

2∑
t Sinterf (t)

2 , (7)

SAR = 10 log10

∑
t (Starget(t) + einterf (t))

2∑
t eartif (t)

2
, (8)

and

NSDR(v̂, v, x) = SDR(v̂, v)− SDR(x, v), (9)

where v̂ is the separated voice part, v is the original singing
voice signal, and x is the original mixture value. The NSDR
is used to estimate the overall improvement in SDR between
x and v̂.

Higher values of SDR, SIR, SAR, and NSDR mean that the
method exhibits better separation performance in terms of the
singing voice separation tasks. More specifically, the value

3http://bass-db.gforge.inria.fr/bss eval/

Fig. 4. Comparison of monaural singing voice separation results on the
ccMixter database by using U-Net and Fusion-Net architectures in all metrics
of SDR, SIR, SAR, and NSDR, respectively.

of SDR indicates the overall quality of the separated target
sound signals. And the value of SIR reflects the suppression
of the interfering source, while the value of SAR represents
the absence of artificial distortion. All metrics are calculated
in dB.

B. Experiment Results

Fig. 4 shows the comparison of monaural singing voice
separation results on the ccMixter database between U-Net
and Fusion-Net on the separation metrics of SDR, SIR, SAR,
and NSDR, respectively. The experimental evaluation results
clearly reveal that the proposed Fusion-Net architecture has
a better separation performance than U-Net architecture for
singing voice separation on the ccMixter database in all
evaluation metrics.

IV. CONCLUSIONS

In this paper, we have proposed a novel monaural singing
voice separation approach by exploring the proposed Fusion-
Net architecture with time-frequency masking under the phase
spectra and magnitude spectra. Experimental results on the
ccMixter database indicate that the proposed Fusion-Net ar-
chitecture outperforms U-Net architecture. For future work,
since F0 estimation and melody extraction are very crucial
for separating singing voice from the mixture music signal,
therefore, we will unify among of them to improve the
separation performance from the more complex mixture audio
database.
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