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Abstract—Speaker recognition systems often suffer from severe
performance degradation due to the difference between training
and evaluation data, which is called domain mismatch problem.
In this paper, we apply adversarial strategies in deep learning
techniques and propose a method using cycle-consistent adver-
sarial networks for i-vector domain adaptation. This method
performs an i-vector domain transformation from the source
domain to the target domain to reduce the domain mismatch.
It uses a cycle structure that reduces the negative influence of
losing speaker information in i-vector during the transformation
and makes it possible to use unpaired dataset for training. The
experimental results show that the proposed adaptation method
improves recognition performance of a conventional i-vector and
PLDA based speaker recognition system by reducing the domain
mismatch between the training and the evaluation sets.

I. INTRODUCTION

Speaker recognition is widely used in electronic products
and can be applied as an assistant tool for speech recognition
systems to improve their performance by decreasing the nega-
tive effects of diverse speaker information in the speeches. For
instance, smartphone voice assistants use speaker recognition
technology to determine whether the voice command is from
the actual owners.

In light of the utterance contents, speaker recognition sys-
tems can be classified into two categories: text-dependent
and text-independent. As the name suggested, text-dependent
means the system’s input utterances should be the same
as the predefined utterance template. On the contrary, text-
independent means the utterance template and the input ut-
terance can be different. According to the classification in-
troduced above, our research in this paper will focus on the
text-independent speaker verification task.

With the introduction of i-vector [1], which contains both
speaker and channel information, researches on speaker recog-
nition have acquired a significant improvement. However, in
text-independent tasks, since the training data used to build
the system and the evaluation utterances come from different
domains, i-vector based speaker recognition systems would
suffer from severe performance degradation. This problem is
called domain mismatch. Language type, text content, speech
duration and audio quality are the typical causes of such
mismatch. The task of solving domain mismatch problem is
called domain adaptation.

In this paper, we proposed a novel cross domain speaker
recognition method that use CycleGAN to converse the i-
vector from two different datasets, namely MIXER and SWB,

then scored by the PLDA classifier. We designed 4 different
CycleGAN based systems, and experimental results indicate
that, among the 4 proposed CycleGAN based system, those
with identity loss all obtain better performances than the
original mismatch system, which means it has a noticeable
effect on reducing the domain mismatch problem.

II. I-VECTOR AND PLDA BASED SPEAKER RECOGNITION

Figure 1 represents the basic structure of conventional
text-independent speaker verification system. When using the
pipeline shown in the Figure 1 for speaker recognition, we
assume the i-vector used in training time and in testing time
are from the same domain. Problem comes when we use i-
vector from different domain in test time, which usually makes
lower recognition accuracy. Formally, we denote the i-vector
used in the training time to the the back-end PLDA classifier as
target domain i-vector ηT , and the i-vector used in the testing
time as source-domain i-vector ηS . Some domain adaptation
techniques fS→T (·) could be applied to i-vector in the source
domain to make it better adapt to the back-end classifier which
was trained on the target domain i-vector.

A. PLDA backends

Probabilistic Linear Discriminant Analysis (PLDA) [2][3] is
a widely used back-end classifier for i-vectors channel com-
pensation and scoring in the speaker recognition. Assuming
that the training data of PLDA consists of I speakers and each
speaker provides J utterances. xij means the j-th utterance
from the i-th speaker. PLDA models the data components by
the following equation:

xij = µ+ Fhi +Gwij + εij (1)

This model comprises two parts, where the µ + Fhi is
the signal component that depends only on the identities of
speakers. Gwij + εij is the noise component that depends
not only on the speaker identities but also on the channel
information in different utterance. µ is the mean of the training
data. The matrix F contains the basis for the between-speaker
subspace and hi represents the position. Similarly, the Matrix
G contains the basis for the within-speaker subspace, and
wij represents the position. other undescribed components are
defined as εij , which is a Gaussian with diagonal covariance
Σ. Thus, the parameter of a PLDA model can be represented
as Θ = {µ, F,G, σ}. To training the PLDA model, EM
algorithm usually employed to maximize the exceptation of
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Fig. 1. Conventional speaker recognition system

Fig. 2. i-vectors in the same domain and different domains

target speaker given its utterance. In the evaluation stage,
assume they are two utterance η1 and η2 for comparison. The
log likelihood score is computed by

score(η1, η2) = log
p(η1, η2|ψs)

p(η1|ψd)(η2|ψd)
(2)

where ψs represented the assumption that two utterance from
a same speaker, and ψd represented the assumption that two
utterance from the different speaker. Higher score means
higher probability that two utterance belonging to the same
speaker.

B. Domain mismatch problem

As described in previous section, training data and evaluat-
ing data usually come from different sources. This throws light
on a fact that many speaker-irrelevant components in i-vectors
affect the model performance. For instance, the training data
and evaluating data usually have diverse audio properties
(audio qualities, background noises, channel characteristics,
etc.) due to the difference of recording devices, while other
properties such as language or speech content may also
degrade the speaker recognition performance.

In speaker recognition area, the word ”domain” is used to
describe a general components similarity of features. As shown
in Figure 2, circles serve as speakers, ovals represent domains,
while triangle and square figures represent i-vectors. The i-
vectors come from the same speaker share the same color,
and they share the same shape when come from the same
domain, vice versa. For i-vectors, only the speaker-relevant
components are expected to take effect for speaker recognition,

the difference of speaker-irrelevant components, nonetheless,
vastly disturbs the recognition result. This problem is called
domain mismatch.

C. Related Work

To mitigate the effect of domain mismatch, domain adapta-
tion [5] plays an essential role to alleviate the problem. During
past years, most of domain adaptation researchers concentrated
on the i-vector and PLDA based speaker recognition system as
it still shows a dominant performance in speaker recognition
field. In this context, some researchers try to modify the i-
vector features. For instance, [6] proposes an inter dataset
variability compensation (IDVC) method to remove a domain-
related subspace from the total i-vector space; [7] suggests
a domain mismatch modeling (DMM) method to discard a
domain-related component from each i-vector. Differently,
some researches aim at optimizing the PLDA back end in
order to enhance the recognition ability of the system under
mismatch situation. For example, [8] proposes an inter dataset
variability modeling (IDVM) method to optimize the hyper-
parameters in the PLDA model to obtain better domain ro-
bustness.

Recent years, benefited from the significant development in
deep learning field, numerous pattern recognition works, in-
cluding speech and speaker recognition, have attained tremen-
dous progress with neural network based methods [9][10].
Among them, several neural network frameworks, such as an
autoencoder based domain adaptation (AEDA) approach sug-
gested in [11], which is based on autoencoder and denoising
autoencoder networks, also take effect on domain adaptations
tasks.

III. CYCLEGAN BASED UNSUPERVISED ADAPTATION

Within the area of deep learning, generated adversarial
network (GAN) has become one of the hottest topics. The
adversarial strategy has a wide range of applications in differ-
ent types of tasks. A successful application of GAN is feature
conversion, in which such strategy helps to generate images
and speeches differ from the original ones to satisfy specific
application situations. Inspired by previous works of GAN, this
paper would like to propose a neural network based domain
adaptation method for speaker recognition. This method uses
both adversarial strategy and a cycle-consistent architecture to
perform domain adaptation on i-vectors with unpaired training
data.

The basic idea of Generative Adversarial Networks (GAN)
[12] is making a competition between two networks that
have exactly opposite goals. These two networks are called
generator and discriminator respectively. The generator aims
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Fig. 3. Illustration of CycleGAN for domain adaptation

at making fake data to cheat the discriminator. On the contrary,
the discriminator aims to distinguish the generated fake data
and real data.

If an adaptation is performed using unpaired data, it is useful
to reduce the effort to prepare the adaptation data. A variation
of GAN with a cycle structure, called cycle-consistent adver-
sarial network, or CycleGAN [13], is used for this purpose.
As shown in Figure 3, it consists of two GAN models and
combines two transformations by the generator networks:
sc = GT→S(GS→T (s)), tc = GS→T (GT→S(t)), where the sc
and tc are called cycle data.

The objective function of the CycleGAN is:

L(GS→T , GT→S , DS , DT ) = LLSGAN (DT , GS→T )

+ LLSGAN (DS , GT→S)

+ λLcyc(GS→T , GT→S)

(3)

where the λ is the coefficient of Lcyc. Mean square
loss LLSGAN is used to replace the log likelihood ob-
jective in LGAN to stabilize the training of CycleGAN.
Lcyc(GS→T , GT→S) is the cycle-consistent loss shown in the
equation5 to ensure that the generated fake data can be highly
recovered to the original data:

Lcyc(GS→T , GT→S) = Es∼ps(s)[||GT→S(GS→T (s))− s||1]

+ Et∼pt(t)[||GS→T (GT→S(t))− t||1]
(4)

Besides the cycle-consistent loss, an identity loss [14] is also
introduced in the whole loss function to further strengthen the
identity consistency:

Lide(GS→T , GT→S) = Et∼ptarget(t)[||GS→T (t)− t||1]

+ Es∼psource(s)[||GT→S(s)− s||1]
(5)

In all, the extended objective function of CycleGan is:

L(GS→T , GT→S , DS , DT ) = LLSGAN (DT , GS→T )

+ LLSGAN (DS , GT→S)

+ λLcyc(GS→T , GT→S)

+ γLide(GS→T , GT→S)

(6)

Note that CycleGAN is proved to be successfully applied on
image style translation, cross-domain speech recognition, etc.
when applying CycleGAN on i-vector domain adaptation, the
property of cycle-consistent guarantees that the generated fake
i-vector don’t lose some speaker-relevant information during
the domain conversion by making an additional constraint to
keep the essential elements in transformed data unchanged.

IV. PROPOSED METHOD

In this paper, we proposed to use CycleGAN to converse
the i-vector from source domain to the target domain. The
conversed i-vector then scored by the PLDA model trained on
the target domain data. In contrast to the baseline system which
is indicated in Figure 1, the structure of our proposed system
is shown in Figure 4. The difference lies on the CycleGAN
part, which will be explained next.

Since the original generator and discriminator used in the
CycleGAN mainly processing the image-like data, which the
property is quite different from the speaking embedding,
e.g. i-vector. We modified the architecture of generator and
discriminator to make it better to fit our goal. The architecture
of proposed CycleGAN model is shown in the Figure 5.

The left hand side of Figure 5 (divided by the dotted
line) demonstrates the structure of generator. The generator
contains down-sampling, residual block [15], and up-sampling
networks. In the down-sampling part, we apply convolutional
operation to down-sample the 600 dimensional inputted i-
vectors to 150 dimension internal representation. There are
several residual block follows the down-sampling network,
where we apply 1x1 convolution operation to the internal i-
vector representation with the expectation that help the model
to converse the i-vector from source domain to target domain
well. For the up-sampling network, we applied transpose
convolutional operations. Detailed information can be found
in the figure.

The architecture of discriminator is shown in the right hand
side of Figure 5. We first apply convolutional operation to the
input i-vector, followed by 3 fully-connected layers. Since we

Fig. 4. Proposed GAN-based system for cross-domain speaker recognition
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Fig. 5. Architecture of proposed generator (left hand side) and discriminator (right hand side) used in the experiments. The Conv means the convolutional
operation and each parameter means # of kernel, stride and padding, respectively. LN means the Layer Normalization. Deconv means transposed convolutional
operation. FC means the fully-connected layer. Except for the residual block and discriminator, we use Leaky RELU [4] with slope 0.2 as the activation
function, we use RELU in the other parts.

treat the problem for discriminator as the binary classification
problem, we then apply sigmoid function to the output of
discriminator, obtain the probability that represent the inputted
i-vector is truly from the target domain.

V. EXPERIMENTAL SETUP

In our experiments, we use Domain Adaptation Challenge
2013 (DAC13) [16] data standard for our experiments. The
training data consists of two datasets: source domain data
MIXER [17][18][19] and target domain data SWB [20]. The
details of these two datasets are shown in Table I.

TABLE I
DATASET STATISTICS

SWB MIXER
# of speakers 3114 3790

Males 1461 1115
Females 1653 2675

Files 33039 36470
Avg. files/spkr 10.6 9.6

Avg. phone num/spkr 3.8 2.8

Two baselines, match and mismatch systems, are built with
the system structure (except the domain adaptation part) shows
in Figure 4. For the training of the systems GMM-UBM
[21], i-vector extractor and PLDA parts, the match system
uses source domain data MIXER, while the mismatch systems
uses target domain data SWB. We evaluate the systems on
SRE2010 C5 extended task [22]. The evaluation criteria are
equal error rate (EER) and minimum detection cost function
(minDCF).

The proposed CycleGAN based system uses MIXER as the
source domain data and SWB as the target domain data for

training. We use the trained GS→T to obtain domain-adapted
SRE10 evaluation i-vectors. Other parts are the same as the
mismatch baseline system.

We design 4 different CycleGAN based systems for com-
parison:

Cyc-basic is the basic CycleGAN model described in above
section.

Cyc-ide appends an identity loss to the full loss of Cycle-
GAN

Cyc-WGAN-ide uses Wasserstein GAN (WGAN) [23],
which is a modified GAN structure, to stabilize the training
and avoid inherent problems of GANs training such as model
collapse.

Cyc-ide-GRL adds another network to the CycleGAN
model, which is called domain predictor. This domain pre-
dictor is trained to be domain-discriminative, but its loss is
reversely combined to the full loss of CycleGAN through a
gradient reversal layer (GRL) between generator and domain
predictor [24][25]. As a result, the generated i-vectors tend to
be more domain-confusing so that this strategy has a positive
effect on the training objective of GAN.

During the training, we use Adabound [26] as the optimizer,
and each model was trained for 40 epochs.

VI. RESULT

Results are shown in Table II. Compared to the match sys-
tem, speaker recognition performance of the Mismatch system
was significantly worse. This fact shows the noticeable per-
formance degradation caused by domain mismatch. The Cyc-
basic system didn’t outperform the mismatch baseline system
in all evaluation criteria. Other adapted systems outperformed



TABLE II
EXPERIMENT RESULT ON MIXER-SWB DATASET

EER DCF10−2 DCF10−3

Match 4.46 0.3918 0.5940
Mismatch 12.25 0.6450 0.7706
Cyc-basic 14.44 0.7781 0.9102
Cyc-ide 10.05 0.6493 0.8069

Cyc-WGAN-ide 11.44 0.6376 0.7760
Cyc-ide-GRL 11.06 0.6549 0.7951

the baseline system in EER. The Cyc-ide system performed
best in EER (17.9% better than mismatch baseline), while
the Cyc-WGAN-ide system performed best in DCF10−2.
However, Under DCF10−3 metric, the mismatch system even
performed better than all CycleGAN based systems. This result
indicates that the adapted i-vectors may have the disadvantage
of increasing the false-alarm rate in the evaluation.

VII. CONCLUSION

This paper proposed a CycleGAN based i-vector domain
adaptation method for text-independent speaker recognition
system. It reduces the domain mismatch components in i-
vector and has the advantage of utilizing unpair datasets for
adaptation. Experimental results indicate that the proposed
method improves the performance in EER of an i-vector and
PLDA based speaker recognition system.
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