
Hypothesis Correction Based on Semi-character
Recurrent Neural Network

for End-to-end Speech Recognition
Yuuki Tachioka

∗ Denso IT Laboratory, Tokyo, Japan
E-mail: ytachioka@d-itlab.co.jp

Abstract—End-to-end automatic speech recognition (ASR) has
become popular because of its simple modeling, but it encounters
out-of-vocabulary words more frequently than the conventional
hybrid approaches that jointly use acoustic and language models.
In particular, word-based end-to-end systems cannot output
any words unseen in training data. To address this problem,
character-based end-to-end systems have been proposed; how-
ever, they are susceptible to noise, and their output words are
not necessarily correct in terms of language. This is because
language constraints, such as lexicons and language models, are
lacking in the decoding process. Thus, errors like misspellings
occur frequently. In the field of natural language processing,
to correct spelling errors, a semi-character recurrent neural
network (scRNN) was proposed whose inputs are the counts
of characters in a word and outputs are word ids. To apply
scRNN to ASR, extensions are needed because scRNN focuses
only on substitution errors. Here, to consider insertion and
deletion errors, we introduce blank word symbols, similar to
blank symbols in connectionist temporal classification, and word
concatenation. Two different ASR tasks, a noisy ASR task and
an ASR task with a large vocabulary, showed that scRNN with
the proposed extension improved the word error rate.

I. INTRODUCTION

Conventional automatic speech recognition (ASR) has used
hybrid approaches that combine multiple models such as
acoustic or language models with a pronunciation dictionary
to achieve high accuracy [1]. The advancement of research on
deep neural networks simplifies these approaches, and various
end-to-end (E2E) types of systems have been proposed [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12]. The advantages of
E2E systems are easy modeling, fast decoding, and no need for
dictionaries. They directly convert acoustic features to symbols
such as phonemes [3], [4], [5], [8], characters [2], [3], [6], [7],
[11], [12], and words [9], [10].

Character-based or word-based E2E systems are simpler
because there is no need for additional decoding with language
models [2], [3], which has advantages such as a lower cost
for model construction and easier applicability for different
languages [13]. However, the data sparsity problem makes
E2E infeasible for out-of-vocabulary (OOV) words unseen
in training data because the amount of speech data is much
less than that of written documents and OOV words appear
more frequently than with conventional hybrid approaches.
Word-based E2E systems output ASR hypotheses faster than
others but cannot output OOV words without the joint use

of character-based E2E systems [14]. Character-based E2E
systems can avoid this problem because they can represent
OOV words; however, they are infeasible for noise. In ad-
dition, errors like misspellings occur frequently, as shown in
Section V, because words are produced on the basis of weaker
language constraints.

In the field of natural language processing (NLP), neural
machine translation (NMT) is widely used [15]. If a par-
allel corpus can be prepared, a neural network can learn
any correspondence (translation). When ASR hypotheses are
inputs and references are outputs, NMT models can be trained
with sentence-to-sentence conversion. This translation globally
changes word sequences but most ASR errors are local.
Experiments in Section V show that NMT does not work
well. In comparison, to correct spelling errors, the semi-
character recurrent neural network (scRNN) was proposed
[16]. It focuses on jumble errors and can correct local errors
at the word level. Their experiments show that it achieved
the highest performance in correcting spelling errors among
state-of-the-art methods including commercial products.

To apply scRNN to ASR hypothesis correction, modifica-
tions are necessary because scRNN performs word-to-word
conversion, which only deals with substitution errors, but it
cannot deal with insertion and deletion errors where one-by-
one word correspondences are not obtained. The experiments
in [16] assumed that there are no insertion and deletion errors,
but ASR causes many such errors. To extend their approach
in order to address this problem, we introduce blank word
symbols and word concatenation. From a different perspective,
because they correct ASR errors, scRNN can produce a
discriminative training like effect [17].

This paper is organized as follows. In Section II, we show
the character-based E2E ASR approach we take, and we
describe scRNN in Section III. To apply scRNN to ASR,
in Section IV, we describe the drawbacks of scRNN and
introduce both blank word symbols and word concatenation
to scRNN. Experiments in Section V show the effectiveness
of our proposed method on two different ASR datasets. The
first one is the fourth CHiME challenge, which is a noisy ASR
task. The second one is a TED-LIUM dataset, which is a large
vocabulary ASR task. These experiments on different datasets
show that, although NMT does not work at all, scRNN with
our extension improves the word correct and error rate.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

862978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

x
�

a

z

h
1

h

d

w
1

w
1

wLwL

y
1
y

2
y

3
yT’

c
1

c
2

cL’bos

b i e b i e d db i e

w
2

w
2

x
2

x
3

x
4

x
5

x
6

xT

hT’h
2

h
3

eos

w
1
’ w

2
’ wL’

Boolean
 or
counts

a

z

1 11 1 2 22 2 L L

LL

L L

h
1

s h
2

s hs h
1

s h
2

s hs

Acoustic features

<Shared
encoder>

<Decoder>
[CTC] [Attention]

<Semi-character RNN>
[bie type] [whole type]

Fig. 1. Structure of proposed E2E system with scRNN based correction on
top of ASR system.

II. END-TO-END SPEECH RECOGNITION

We use one of the state-of-the-art character-based E2E ASR
systems as a baseline. E2E systems are mainly classified into
two types: connectionist temporal classification (CTC) [2], [3],
[5], [9], [10] and attention mechanism (ATT) [4], [6], [7],
[8]. The lower two parts of Fig. 1, the shared encoder and
decoder, show the E2E system we use, which jointly uses CTC
and ATT [11], [12]. Inputs are acoustic features in T frames,
x1, ...,xT . The encoder receives x1:T and converts T ′-length
internal representations h1:T ′ , where T ′ does not necessarily
match with T due to thinning out.

A. CTC model

Outputs of CTC are T ′-length label sequences y1, ..., yT ′ .
CTC allows blank symbols and repeated characters in labels
to compensate for the difference between character length
and label length T ′. The probability of CTC for a character
sequence c is independent between labels y as

PCTC(c|x) =
∑

y∈Ψ(c)

T ′∏

t′=1

σht′ (x)(yt′), (1)

where Ψ is a set of all T ′-length possible label sequences,
y = y1, ..., yt′ , ..., yT ′ , realizing a character sequence c and
σht′ (x) is a softmax output for the label yt′ conditioned on
the encoder output ht′(x). Finally, CTC outputs characters
after deleting blank symbols and repeated characters.

B. ATT model

Outputs of ATT are L′-length character sequences c1, ..., cL′

with the beginning of a sentence token (bos) and the ending
of sentence token (eos). The probability of ATT is represented

as a recursive form starting from c0 = bos:

PATT (c|x) =
L′∏

l′=1

P (cl′ |h̄(x), c0:(l′−1)), (2)

where h̄ is a bunch of encoder outputs h1, ...,hT ′ . These
output characters are separated by spaces and converted to L-
length word sequences w1, ..., wL. The relationship between
L′ and L is L′ =

∑L
l=1 |wl|, where |wl| is the number of char-

acters in a word wl. Output words are not necessarily correct
in terms of language because this system does not use explicit
language constraints. In fact, for E2E systems, performance
has been frequently evaluated in terms of character error rates
(CERs) rather than word error rates (WERs) because WERs
are likely to be worse than the conventional systems that use
language models even though the CERs are almost the same.

C. Multi-task learning of CTC and ATT

To exploit the advantages of CTC and ATT, a combination
of these two models was proposed [11]. Multi-task loss for
reference character sequences c∗

L(c∗|x) = −λ lnPCTC(c
∗|x)− (1−λ) lnPATT (c

∗|x), (3)

is to be minimized. CTC can take a monotonic alignment
by using a forward-backward algorithm but cannot consider
inter-label dependencies because of an assumed independence
between labels. ATT can consider inter-label dependencies but
is susceptible to noise because an ATT model uses weaker
constraints than a CTC model. By using CTC-model training
as an auxiliary task, CTC alignment makes convergence faster
in multi-task learning.

III. SEMI-CHARACTER RECURRENT NEURAL NETWORK

(SCRNN)

In the field of NLP, to correct spelling errors, scRNN was
proposed with a focus mainly on jumble errors. These are
permutation errors in internal characters with the beginning
and ending characters being constant, e.g., “characters” →
“chraatcres”, because it is relatively easy to recognize an
original form when the beginning and ending characters are
the same [16]. To model this, three types of characters, i.e.,
beginning, ending, and internal, are separately dealt with. We
validate original count type with separate modeling in addition
to two different variations: boolean type and whole modeling.

A. Count type

The upper part of Fig. 1 shows the scRNN, which receives
the counts of characters in a word converted from the words of
ASR hypotheses, w′

1, ..., w
′
L, and outputs the corrected word

sequences w1, ..., wL. wl is selected from the words, Wtr,
appeared in the training data. The word w′

l is composed of
|w′

l| characters, cl1, ...c
l
|w′

l|, which is one of the prepared C
types of characters. The dimension of input vectors is three
times the number of characters including alphabets and tokens,
because scRNN deals with three types of characters separately.
Inputs bl and el are the C-dimensional one-hot vector, and il

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

863

is a sparse vector corresponding to the word w′
l. These vectors

are represented by

bl = o(cl1), el = o(cl|w′
l|), il =

|w′
l|−1∑

j=2

o(clj). (4)

Here, we denote o(c) as a one-hot vector whose element
corresponding to the character c is unity.

For example, when the input word w is “speech,” the
respective vectors are b = o(‘s’), i = o(‘p’)+o(‘e’)+o(‘e’)+
o(‘c’) = o(‘c’)+2o(‘e’)+o(‘p’), and e = o(‘h’), The input
to the scRNN is their concatenated vector and the output is a
corrected word wl as

hs
l = LSTM

(
W1[b

�
l i

�
l e

�
l]

� +W2h
s
l−1

)
,

wl = argmax
w∈Wtr

σW3hs
l
(w), (5)

where � denotes the transpose. Here, a long short-term mem-
ory (LSTM) model [18] with weight matrices (W1, W2, and
W3) and hidden layer hs

l is used to obtain word embeddings.

B. Boolean type

The counts of characters are susceptible to noise. Boolean
variables may be more effective than counts. Although am-
biguity increases and discrimination performance decreases,
noise robustness might improve especially when misspellings
like repeated characters or a drop of characters frequently
appear. The experiments in Section V were done to compare
the performance of count types with that of Boolean types.
The Boolean counterparts of il in Eq. (4) are

il = o(cl2) ∨ o(cl3) . . . ∨ o(cl|w′
l|−1), (6)

where ∨ is a boolean disjunction and b and e are the same.
For the above example, i is o(‘p’)∨o(‘e’)∨o(‘e’)∨o(‘c’) =
o(‘c’) + o(‘e’) + o(‘p’).

C. Whole modeling instead of separate modeling

In addition, compared with separate modeling, the whole
model uses the counts of whole characters as an input vector:

dl =

|w′
l|∑

j=1

o(clj). (7)

For the above example, d is o(‘c’)+2o(‘e’)+o(‘h’)+o(‘p’)+
o(‘s’) in count type and o(‘c’) + o(‘e’) + o(‘h’) + o(‘p’) +
o(‘s’) in Boolean type.

IV. APPLICATION OF SCRNN TO ASR

A. Drawbacks of scRNN

To correct ASR hypotheses, it is necessary to deal with
four types of errors consisting of substitution, insertion, and
two types of deletion as shown in Fig. 2. Here, its input is
the ASR hypothesis, and its output is the reference. scRNN
can only be used for substitution errors in Fig. 2 (substitution).
Original form of scRNN cannot deal with other types of errors.
For insertion and deletion errors, it is necessary to compen-
sate for the mismatch of word length between hypotheses

A BHyp

Ref
�

Hyp

Ref
�

Hyp

Ref
�

Hyp

Ref
�

Substitution

Deletion 1

Insertion

ignore
(ign)

blank
(blk)

blank+word
concat.
 (b+c1)

blank+word
concat.
 (b+c2)

A C

A B

CA

A B

CA

A B

CA

A B

CA

A @ C

A B C

A C

CA

A C

CA

A C

B+CA

A C

CA

Deletion 2

A @ C

A B D

A C

DA

A C

DA

A C

B+DA

A C

B+DA

A B C

A @ C

A C

CA

A C

C

B

<blk>A

A C

C

B

<blk>A

A C

C

B

<blk>A

Fig. 2. Four types of blank word symbols (blk) and word concatenation in
training stage, where hypotheses (Hyp) and references (Ref) are aligned and
@ is null symbol. Input and output to scRNN are Hyp and Ref, respectively.

and references, because one-by-one word correspondence is
needed by scRNN. The simplest solution is to ignore insertion
and deletion errors (ign), but this interrupts the context of
words. We propose to use blank word symbols and word
concatenation to compensate for these mismatches.

B. Blank word symbols

The insertion errors in Fig. 2 (insertion) are easier to
handle than deletion errors. For insertion errors, we propose
to introduce blank word symbols (blk), similar to the blank
symbols in CTC. The symbols make a one-by-one word
correspondence in insertion and deletion errors. An input word
in a hypothesis can be related to a blank word symbol in the
reference. Blank word symbols (blk) only focus on insertion
errors and ignores deletion errors.

C. Word concatenation

For deletion errors, blank word symbols cannot be used
because it is impossible to detect the existence of deletion in
the hypotheses during testing time. To make one-by-one word
correspondences between a reference and hypothesis, we use
word concatenation where multiple words are concatenated
and dealt with as if they are one word. Here, we propose
two types of word concatenations: b+c1 and b+c2. In Fig. 2
(deletion 1), where a word after a deletion does not match, “C”
in the hypotheses are related to “B D” in the reference, which
are common to b+c1 and b+c2. If there are many deletions
in a sentence, the length of concatenated words is long, and
long concatenated words scarcely appear in the dataset and
thus degrade the performance. In this paper, the maximum
concatenation of words was set to be two. In Fig. 2 (deletion
2), where a word after a deletion matches that in the reference,
“B” may be dropped and hard to recognize. Thus, ignoring “B”

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

864

can be a better option, which is b+c2. This method can also
be applied to word-based E2E combined with character-based
E2E [14]. In addition, because this corrects ASR errors, it can
have a discriminative training like effect [17].

V. EXPERIMENTS

A. Experimental setups

We evaluated the proposed method on two datasets. The
first one was a 1ch track of the fourth CHiME challenge
(CHiME 4), which is a noisy ASR task without speech
enhancement [19]. We expected that the proposed method can
be more effective for noisy ASR tasks because E2E systems
are susceptible to noisy data. The second one was a TED-
LIUM dataset, which is a large vocabulary ASR task [20].
Training, development, and evaluation sets were prepared for
both tasks.

Hypotheses were obtained by the espnet toolkit1 [11], [12]
with attached scripts. This E2E system did not use any
language models or lexicons. Detailed setups are shown in
[11]. Location-based ATT was used. The number of units was
320, and λ was 0.5. For decoding, the beam size was 20. In
the shared encoder, the top two LSTM layers picked up every
second hidden state of the lower layers, i.e., T ′ = T/4.

The vocabulary of scRNN, Wtr was constructed with words
appearing in the respective training set. For development and
evaluation sets, OOV words appeared. Special OOV word
symbols (unk) were added to the scRNN. The scRNN was
trained on the training set with a minibatch size of 256. LSTM
models with 650 units were used with a dropout of 0.01.
To adjust learning rates, Adam [21] was used. The number
of epochs was 15. We modified the scripts2 written by the
authors of [16]. We compared two input vector types (Boolean
and counts) and two types of modeling (three separated types
of counts (bie) and the counts in whole words (w)). The
dimension of the input character types C was 50, which
consisted of alphabets (a–z) and tokens (hyphen, comma,
period, etc.). There are four types of introduced blank word
symbols and word concatenations in Fig. 2. “unk” and blank
word symbols were deleted before evaluation.

In addition, the proposed method was compared with NMT
by using the seq2seq toolkit3 [22]. This model was trained as
if it were a translation from ASR hypotheses as an original
language to references as a target language. NMT was trained
in terms of accuracy criterion (acc) and bleu [23] criterion.

B. Fourth CHiME challenge (Noisy ASR)

Table I shows the WERs [%] on the CHiME 4 development
set. NMT performed the worst, although accuracy criterion
was slightly better than the bleu criterion. Table II shows
the detailed comparison in terms of the word correct (C),
substitution (S), deletion (D), insertion (I), and error (E) rates
[%]. Except for the word correct (C) rates, a lower rate

1Available at https://github.com/espnet/espnet
2Available at https://github.com/keisks/robsut-wrod-reocginiton
3Available at https://github.com/google/seq2seq

TABLE I
WER[%] ON CHIME 4 CHALLENGE DEVELOPMENT (DEV) AND

EVALUATION (EVAL) SET. INPUTS WERE WHOLE COUNT (W) OR SEPARATE

COUNT (BIE). INPUT VECTOR TYPE WAS BOOLEAN (B) OR COUNTS (C).
SCRNN HAS THREE TYPES OF INPUTS AND OUTPUTS IN FIG. 2. CERS OF

BASELINE ON DEVELOPMENT SET WERE 33.5% (REAL) AND 33.7%
(SIMU), AND THOSE ON EVALUATION SET WERE 44.1% (REAL) AND

41.7% (SIMU), RESPECTIVELY.

dev set eval set
type model B/C real simu real simu

baseline 64.7 64.0 78.1 75.2

ign
w

B 64.7 64.3 78.2 75.1
C 63.3 62.5 77.2 74.1

bie
B 63.1 62.4 77.1 73.8
C 62.8 62.3 76.7 73.6

blk
w

B 64.5 63.8 77.4 74.4
C 62.6 61.8 76.2 73.0

bie
B 62.3 61.8 75.9 73.0
C 62.0 61.3 75.3 72.4

b+c1
bie

B 62.8 62.1 76.5 73.6
C 62.4 61.8 76.2 73.2

b+c2
B 62.7 62.0 76.4 73.4
C 62.2 61.6 76.0 72.9

NMT (acc) 96.5 96.3 99.3 99.4
NMT (bleu) 97.2 97.2 100.0 100.0

TABLE II
WORD CORRECT (C), SUBSTITUTION (S), DELETION (D), INSERTION (I),

AND ERROR (E) RATES [%] ON CHIME 4 CHALLENGE. BASELINE SYSTEM

WAS COMPARED WITH IGN (BIE,C), BLK (BIE,C), B+C1 (BIE,C), AND NMT
(ACC) SYSTEMS.

real simu
type C S D I E C S D I E

dev set
baseline 41.9 49.6 8.5 6.6 64.7 44.0 48.1 7.9 8.1 64.0

ign 43.9 47.5 8.6 6.6 62.8 45.8 46.2 8.0 8.2 62.3
blk 43.7 45.4 10.9 5.7 62.0 45.8 44.0 10.3 7.0 61.3

b+c1 44.0 45.9 10.1 6.4 62.4 46.0 44.7 9.3 7.7 61.8
NMT 9.6 80.3 10.1 6.2 96.5 11.1 79.0 9.8 7.4 96.3

eval set
baseline 31.5 59.2 9.2 9.6 78.1 34.8 57.1 8.1 10.0 75.2

ign 33.0 57.6 9.3 9.7 76.7 36.5 55.4 8.2 10.1 73.6
blk 32.9 55.4 11.7 8.3 75.3 36.2 53.0 10.8 8.6 72.4

b+c1 33.0 56.1 11.0 9.2 76.2 36.4 53.7 9.9 9.6 73.2
NMT 8.8 80.8 10.4 8.0 99.3 9.6 80.9 9.5 9.0 99.4

indicates a better performance. The number of substitution
errors increased significantly, whereas the number of deletions
and insertions was almost the same as that of the baseline.
NMT created likely sentences that did not hold the original
meanings. The average number of words per sentence was
close between the baseline (16.3 words/sent) and NMT (15.8
words/sent). scRNN (groups 2–4 in Table I) performed better
than the baseline. In all cases, the Boolean type (B) was
inferior to the count type (C). The influence of noise on the
character counts was limited. The scRNN with blank word
symbols (blk) outperformed the scRNN ignoring deletion and
substitution errors (ign) because ign basically does not reduce
the number of deletion and insertion errors except outputting
“unk”. Word concatenation (b+c1) achieved the best correct
rate, but, in total, blk achieved the best WER. Unfortunately,
b+c2 was worse than blk. A relative reduction of 15.7% in
insertion error, 9.3% in substitution error, and 4.4% in word

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

865

REF: You know I was already bargaining as a five year old child with doctor P to try to get out of doing these exercises

unsuccessfully of course

e2e: You know I was already barganing at the five year old child with darker pretty to talk to get out of doing these ext eyes

on successfully of course

scRNN: You know I was already bargaining at the five year old child with doctor pretty to talk to get out of doing these ex eyes

on successfully of course

NMT: You know I was already married at the old number of my family dropped to me was going to get to some sense

 with these genomes of course on

Fig. 3. Samples of error corrections on TED-LIUM evaluation set. Two substitution errors (barganing → bargaining and darker → doctor) removed.

TABLE III
WER [%] ON TED-LIUM DEVELOPMENT (DEV) AND EVALUATION

(EVAL) SET. CERS OF BASELINE WERE 12.8% (DEV) AND 12.4% (EVAL),
RESPECTIVELY.

type model B/C dev set eval set

baseline 25.8 24.5

ign bie
B 26.0 24.6
C 25.7 24.3

blk
w

B 29.4 27.6
C 26.4 25.2

bie
B 25.6 24.5
C 25.4 24.2

b+c1
bie

B 25.9 24.7
C 25.5 24.4

b+c2
B 25.8 24.7
C 25.6 24.4

NMT (acc) 77.0 70.4
NMT (bleu) 77.9 71.4

error was obtained.
Table I also shows the WERs on the CHiME 4 evaluation

set. The tendencies were the same. NMT was the worst and
scRNN was effective, especially with blank word symbols.
ign and b+c1 achieved the best correct rate, and blk achieved
the best WER. A relative 3.7–3.9% WER improvement was
observed.

C. TED-LIUM (Large-vocabulary ASR)

Table III shows the WERs [%] on the TED-LIUM dataset.
The performance of NMT was much worse than that of the
baseline. In this case, the number of substitutions was three
times larger, and the number of deletion and insertions was
twice or three times larger than those of the baseline.

The other tendencies were similar to those observed in the
CHiME 4. scRNN improved the WER by a relative 1.2–1.5%.
Although TED-LIUM was more difficult for scRNN because
the vocabulary was large and the number of OOV words for
scRNN was greater than that of the CHiME 4, scRNN was
still effective. Fig. 3 shows sample results, where “barganing”
was an invalid word and this was corrected by scRNN.

VI. CONCLUSION

E2E ASR systems are susceptible to noise. In particular,
character-based E2E outputs errors like misspellings because
it does not use explicit language constraints. To correct these
errors, we propose applying scRNN, whose aim is spelling
correction, to ASR problems, but direct application is impos-
sible because scRNN focuses only on substitution errors. To

deal with insertion and deletion errors, blank word symbols
and word concatenation are introduced. Experiments on two
different ASR tasks show that scRNN with our extension
improved the baseline on both tasks, whereas NMT did not at
all. In particular, for a noisy ASR task, the proposed scRNN
reduced WER relatively by 4%.

REFERENCES

[1] K. Kita, T. Kawabata, and T. Hanazawa, “HMM continuous speech
recognition using stochastic language models,” in Proceedings of
ICASSP, vol. 1, 1990, pp. 581–584.

[2] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proceedings of the 31st International
Conference on Machine Learning, 2014, pp. 1764–1772.

[3] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-end speech
recognition using deep RNN models and WFST-based decoding,” in
Proceedings of ASRU, 2015, pp. 167–174.

[4] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Proceedings of
NIPS, 2015, pp. 577–585.

[5] A. Senior, H. Sak, F. de Chaumont Quitry, T. Sainath, and
K. Rao, “Acoustic modeling with CD-CTC-SMBR LSTM RNNs,” in
Proceedings of ASRU, 2015, pp. 604–609.

[6] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,” in
Proceedings of ICASSP, 2016, pp. 4945–4949.

[7] L. Lu, X. Zhang, and S. Renals, “On training the recurrent neural
network encoder-decoder for large vocabulary end-to-end speech
recognition,” in Proceedings of ICASSP, 2016, pp. 5060–5064.

[8] R. Prabhavalkar, T. Sainath, B. Li, K. Rao, and N. Jaitly, “An analysis
of “attention” in sequence-to-sequence models,” in Proceedings of
INTERSPEECH, 2017, pp. 3702–3706.

[9] K. Audhkhasi, B. Ramabhadran, G. Saon, M. Picheny, and D. Nahamoo,
“Direct acoustics-to-word models for English conversational speech
recognition,” in Proceedings of INTERSPEECH, 2017, pp. 959–963.

[10] H. Soltau, H. Liao, and H. Sak, “Neural speech recognizer: Acoustic-
to-word LSTM model for large vocabulary speech recognition,” in
Proceedings of INTERSPEECH, 2017, pp. 3707–3711.

[11] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based end-to-
end speech recognition using multi-task learning,” in Proceedings of
ICASSP, 2017, pp. 4835–4839.

[12] S. Watanabe, T. Hori, S. Kim, J. R. Hershey, and T. Hayashi, “Hybrid
CTC/attention architecture for end-to-end speech recognition,” IEEE
Journal of Selected Topics in Signal Processing, vol. 11, no. 8, pp.
1240–1253, 2017.

[13] S. Watanabe, T. Hori, and J. R. Hershey, “Language independent
end-to-end architecture for joint language and speech recognition,” in
Proceedings of ASRU, 2017, pp. 265–271.

[14] J. Li, G. Ye, R. Zhao, J. Droppo, and Y. Gong, “Acoustic-to-word
model without OOV,” in Proceedings of ASRU, 2017, pp. 111–117.

[15] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of EMNLP,
2015, pp. 1412–1421.

[16] K. Sakaguchi, K. Duh, M. Post, and B. Van Durme, “Robsut wrod
reocginiton via semi-character recurrent neural network,” in Proceedings
of the Thirty-First AAAI Conference on Artificial Intelligence, 2017,
pp. 3281–3287.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

866

[17] Y. Tachioka and S. Watanabe, “Discriminative method for recurrent
neural network language models,” in Proceedings of ICASSP, 2015, pp.
5386–5390.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, pp. 1735–1780, 1997.

[19] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and R. Marxer, “An
analysis of environment, microphone and data simulation mismatches
in robust speech recognition,” Computer Speech and Language, vol. 46,
pp. 535–557, 2016.

[20] A. Rousseau, P. Deléglise, and Y. Estève, “Enhancing the TED-LIUM
corpus with selected data for language modeling and more TED talks,”
in Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), 2014.

[21] D. Kingma and L. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of ICLR, 2015.

[22] D. Britz, A. Goldie, T. Luong, and Q. Le, “Massive exploration of
neural machine translation architectures,” in Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing,
2017, pp. 1442–1451.

[23] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: A method
for automatic evaluation of machine translation,” in Proceedings of
the 40th Annual Meeting of Association for Computational Linguistics
(ACL), 2002, pp. 311–318.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

867

