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Abstract—This paper proposes a novel approach to speech
representation for both speaker recognition and language identi-
fication by characterizing the entire feature space by a tensor. In
conventional studies of both tasks, i-vector is commonly used as
the state-of-the-art representation. Here, i-vector extraction can
be regarded as projection of utterance-based GMM supervector
onto a low-dimensional space. In this paper, for the aim of explicit
modeling of the correlation among mean vectors of a GMM, an
utterance is not modeled as its GMM-based supervector but as its
matrix and the entire set of utterances is modeled as its tensor. By
applying tensor factor analysis, we obtain a new representation
for an input utterance. Experimental evaluations for speaker
recognition and language identification show that our proposed
approach has effectiveness especially for the speaker recognition
task.

I. INTRODUCTION

Language identification (LID) and speaker recognition (SR)
is a technique to identify language and speaker information
from an input utterance, respectively. Speech varies due to
conditions such as the speaker and microphone, so the varia-
tion of these irrelevant factors should be dealt with properly
to diminish degradation of the performance of both tasks.
In conventional studies of both tasks, i-vector is commonly
used as the state-of-the-art representation [1], [2]. I-vector
is derived by factor analysis of Gaussian Mixture Model
Supervector (GMM-SV) which is a stacked vector of all the
means in the GMM [3]. I-vector extraction can be regarded
as Principal Component Analysis (PCA) to GMM-SV. At
this point of view, representation of speaker characteristics
based on Eigenvoice Conversion (EVC), which was proposed
in the field of voice conversion, is almost the same as i-
vector [4]. In these two methods, the means of utterance-
based GMM are represented by a high-dimensional vector
(GMM-SV), so the correlation among acoustic factors that
GMM captures is difficult to be treated. To solve this problem,
speaker representation based on tensor factor analysis was
proposed [5], [6]. In this representation, for the aim of explicit
modeling of the correlation among mean vectors of a GMM, an
utterance is not modeled as its GMM-SV but as its matrix and
the entire set of utterances of various speakers is modeled as
its tensor. By introducing tensor factor analysis to the tensor
of the training data set, speaker characteristics of an input
utterance are represented. In this paper, we propose a new
method of speech representation that has connection to [5],

and also apply the both methods to the language identification
task. As only preliminary experimental evaluation was done
in [5], we evaluate the effectiveness of both methods in both
tasks respectively.

II. CONVENTIONAL LANGUAGE/SPEAKER
REPRESENTATION

A. GMM-SV

GMM-SV is a high-dimensional stacked vector of all the
means in the utterance-based GMM [3]. Since each GMM
component is expected to capture an acoustic factor such as a
phoneme and phone, GMM-SV can be regarded as a feature
which represents each acoustic factor in an input utterance.

Before extracting GMM-SV, utterance-based GMM needs
to be estimated. It is estimated by doing Maximum a pos-
teriori (MAP) adaptation of an input utterance from Univer-
sal Background Model (UBM). UBM is a language/speaker-
independent GMM that is constructed from utterances of
various languages and speakers.

B. i-vector

LetM be a GMM-SV.M extracted from an input utterance
is decomposed based on factor analysis by using the total
variability matrix T , which captures the variation of text,
languages, speakers or microphones as follows:

M =m+ Tw. (1)

In Equation 1, m denotes the supervector of UBM and w
is called i-vector [2]. GMM-SV includes irrelevant factors
(such as text, languages, or microphones in the case of
speaker recognition). In the case of i-vector, on the other hand,
projection of GMM-SV by the total variability matrix can help
removing these factors. This projection can be regarded as
PCA of GMM-SV, so i-vector is almost the same as speech
representation based on EVC.

C. Speaker representation based on EVC

EVC is one of the GMM-based voice conversion methods
[4]. In EVC, Eigenvoice, which is a method of adaptation
of acoustic models [7], is introduced to speaker adaptation
for voice conversion. In GMM-based voice conversion, a
conversion model is constructed based on a joint GMM of
the feature vector of input speaker Xt and that of output
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Fig. 1. Construction of speaker space based on Eigenvoice.

speaker Y t. In the case of EVC, the feature vector of output
speaker Y t is represented by using the features of S pre-stored
speakers.

First, S GMM-SVs of pre-stored speakers are extracted. The
number of dimensions of GMM-SV is DM (D and M denote
the number of dimensions of the mean vector and the number
of components respectively). Second, a speaker space is con-
structed by Singular Value Decomposition (SVD) of S GMM-
SVs. The speaker space is represented by a bias vector and
K(≤ S) basis vectors (See Figure 1). Therefore, GMM-SV of
the output speaker M (tar) is represented by linear combina-
tion of basis vectors B = [B⊤

1 ,B
⊤
2 , · · · ,B

⊤
M ]⊤ ∈ RDM×K

and a bias vector b = [b
(0)⊤

1 , · · · , b(0)
⊤

M ]⊤ ∈ RDM×1 as
follows:

M (tar) = Bw + b (2)

As GMM-SV of the output speaker is manipulated by the
K-dimensional weight vector w, w can be regarded as the
representation of the output speaker. By using the features
of S pre-stored speakers, the output speaker is effectively
represented even in the case of a small amount of training
utterances.

The weight vector can be estimated based on a maximum
likelihood (ML) or MAP criterion using utterances of the
output speaker. Let Y (tar)

t be the feature vector of the output
speaker at t-th frame, and Y (tar) be the sequence of Y (tar)

t .
w is estimated based on a ML criterion as follows:

ŵ = argmax
w

p(Y (tar)|λ(EV ),w) (3)

The following updating equation is derived by introducing the
auxiliary function:

ŵ=

{
M∑

m=1

γ(tar)m B⊤
mΣ(Y Y )−1

m Bm

}−1M∑
m=1

B⊤
mΣ(Y Y )−1

m Y
(tar)

m (4)

γ(tar)m =
T∑

t=1

γm,t, Y
(tar)

m =
T∑

t=1

γm,t(Y
(tar)
t − b(0)m ) (5)

γm,t = p(m|Y (tar)
t ,λ(EV ),w) (6)

On the other hand, w is estimated based on a MAP criterion
as follows:

ŵ = argmax
w

p(Y (tar)|λ(EV ),w)p(w) (7)

If p(w) is assumed N (0, I) as in the case of i-vector, the
following updating equation is derived:

ŵ=

{
I+

M∑
m=1

γ(tar)m B⊤
mΣ(Y Y )−1

m Bm

}−1M∑
m=1

B⊤
mΣ(Y Y )−1

m Y
(tar)

m (8)

D. Speaker representation based on SAT for EVC

Speaker Adaptive Training (SAT) was introduced to EVC
[8]. SAT was proposed as a method of construction of initial
model for speaker adaptation, and better conversion perfor-
mance was achieved by introducing SAT to EVC. SAT is done
for each speaker in [8], but can also be done for each utterance.
In this section, utterance-level SAT is explained. In the case
of utterance-level SAT, basis vectors, a bias vector, weight
vectors of the training utterances are estimated to maximize
the likelihood of all the training utterances as follows:

Λ̂(ŵN
1 ) = argmax

λ,wN
1

N∏
n=1

Tn∏
tn=1

p(Y
(n)
tn |λ(wn)) (9)

In Equation 9, Y (n)
tn denotes the feature vector of n-th training

utterance at tn-th frame. λ(wn) denotes parameters of the
GMM adapted to n-th training utterance represented by the
weight vector wn and Λ(wN

1 ) denotes the set of λ(wn).
wN

1 denotes the set of the weight vectors of all the training
utterances (w1,w2, · · · ,wN ).

The parameters are updated according to the following
procedure:

1) Update the weight vectors ŵn of all the training utter-
ances using the current basis vectors and bias vector.

2) Update the basis vectors B̂1, . . . , B̂K and the bias
vector b̂ using ŵn.

3) Iterate updating these parameters several times.

The updating equation of the weight vector ŵn is as follows:

ŵn=

{
M∑

m=1

γ(n)m B
⊤
mΣ−1

mBm

}−1M∑
m=1

B⊤
mΣ−1

m (Y
(n)

m −γ(n)m bm)(10)

Y
(n)

m =

Tn∑
tn=1

γ
(n)
m,tnY

(n)
tn (11)

γ
(n)
m,tn =p

(
m|Y (n)

tn ,λ(wn)
)
, γ(n)m =

Tn∑
tn=1

γ
(n)
m,tn (12)

The updating equations of the basis vectors B̂1, · · · , B̂K and
the bias vector b̂ are as follows:

v̂m =

{
N∑

n=1

γ(n)m W⊤
nΣ

−1
m W n

}−1 N∑
n=1

W⊤
nΣ

−1
m Y

(n)

m (13)

v̂m =
[
b̂
⊤
m B̂

(1)

m · · · B̂
(K)

m

]⊤
∈ R(K+1)D×1 (14)

Ŵ n =
[
1 ŵ⊤

n

]
⊗ I ∈ RD×(K+1)D (15)
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E. Relations of speaker representation based on EVC, SAT for
EVC, and i-vector

In II-B, II-C, we explained that speaker representation
based on EVC and i-vector can be derived from PCA of
GMM-SV. However, both methods are different in terms of
implementation of PCA. Speaker representation based on EVC
is derived from deterministic PCA (DPCA), which is done to
maximize variance of training data. On the other hand, i-vector
extraction can be regarded as Probabilistic PCA (PPCA),
which is done to maximize likeihood of training data. In the
case of DPCA, orthogonal basis vectors are calculated and
the number of dimensions can be reduced by truncating basis
vectors. In the case of PPCA, basis vectors are not generally
orthogonal and the number of dimensions is set beforehand.
Utterance-level SAT for EVC can be regarded as PPCA as in
the case of i-vector.

III. LANGUAGE/SPEAKER REPRESENTATION BASED ON
TENSOR FACTOR ANALYSIS

A. Overviews

In the case of EVC and i-vector, a feature space is con-
structed based on GMM-SV. However, since GMM-SV is
simply a stacked vector of the means of GMM, it does not
have the axis of the GMM components explicitly. In [5],
[6], the mean vectors of GMM are represented as a matrix,
whose row and column respectively correspond to the GMM
component and the dimension of the mean vector, and tensor
factor analysis are applied to the tensor of the entire set of
training utterances to deal with correlation among the GMM
components explicitly. In this paper, we apply this method to
language/speaker representation.

B. Language/speaker representation based on Tucker decom-
position

SVD can be rewritten as decomposition of a second-order
tensor as follows:

A = USV ⊤ = S ×1 U ×2 V (16)

Tucker decomposition is an extension of SVD to a third-order
tensor as follows [9]:

A = S ×1 U1 ×2 U2 ×3 U3 (17)

The mean vectors of utterance-based GMM are expressed
by a M × D matrix for each training utterance. M and D
respectively denote the number of GMM components and that
of the mean vector. The bias matrix b is calculated as the
mean of these M × D matrices, and then it is subtracted
from each matrix. Let N be the number of training utterances.
These M × D matrices is expressed by a third-order tensor
M ∈ RM×D×N . M is decomposed by appling Tucker
decomposition as follows:

M = GM×D×N ×1 U
(M) ×2 U

(D) ×3 U
(N) (18)

In Equation 18, U (M) ∈ RM×M ,U (D) ∈ RD×D, and
U (N) ∈ RN×N capture the effects of the GMM component,

the dimension of the mean vector, and the utterance index
respectively. Here, the following matrix of n-th utterance is
derived by fixing the third mode of M:

µ̂(n) = G ×1 U
(M) ×2 U

(D) ×3 U
(N)(n, :) (19)

In Equation 19, if U (N)(n, :) ∈ R1×N and the other part
are regarded as the weight vector and the basis respectively,
Equation 19 is the same as SVD. In this paper, Equation 19
is grouped to capture correlations among GMM components
as follows:

µ̂(n)=U (M)
{
G ×2 U

(D) ×3 U
(N)(n, :)

}
=U (M)W⊤

n (20)

In Equation 20, U (M) and W n ∈ RD×M are regarded as the
basis matrix and the weight matrix. By truncating the basis
matrix, an input utterance is decomposed as follows:

µ(new) = U (M)W⊤
(new) + b (21)

In Equation 21, U (M) ∈ RM×KM (KM ≤ N) is the basis
matrix, W (new) ∈ RD×KM is the weight matrix. A D ×
KM matrix represents language or speaker. Estimation of the
weight matrix W can be regarded as effective estimation of
GMM.

In [5], the weight matrixW is calculated based on the mini-
mizing mean square errors (MMSE) criterion for Equation 21.
Furthermore,W can also be estimated based on a ML or MAP
criterion as in the case of the weight vector based on EVC.
W is estimated based on a ML criterion as follows [6]:

Ŵ = argmax
W

p(Y (tar)|λ(EV ),W ) (22)

The following updating equation is derived by introducing the
auxiliary function:

vec(Ŵ )=

[
M∑

m=1

γ(tar)m U⊤
mUm ⊗Σ(Y Y )−1

m

]−1

vec(C) (23)

C =
M∑

m=1

Σ(Y Y )−1

m (Y
(tar)

m − γ(tar)m b(0)m )Um (24)

Um=U (M)(m, :)∈R1×KM , b(0)m =b(m, :)⊤∈RD×1 (25)

In Equation 23, vec() is the vec operator that stacks the
columns of a matrix into a vector.

On the other hand, W is estimated based on a MAP
criterion as follows:

Ŵ = argmax
W

p(Y (tar)|λ(EV ),W )p(W ) (26)

If p(vec(W n)) is assumed N (0, I), the following updating
equation of the weight matrix Ŵ n is derived:

vec(Ŵ )=

[
I+

M∑
m=1

γ(tar)m U⊤
mUm⊗Σ(Y Y )−1

m

]−1

vec(C) (27)

C =
M∑

m=1

Σ(Y Y )−1

m

[
Y

(tar)

t − (W nU
⊤
m + bm)

]
(28)
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IV. BILINEAR BASIS FOR TENSOR-BASED
LANGUAGE/SPEAKER REPRESENTATION

In Section III, only U (M) is used as the basis matrix.
However, the dimensions of the mean vectors of GMM can
also have some correlation, so we use U (M) and U (D) as
the bilinear basis matrices, In the case of bilinear basis,
Equation 19 is grouped as follows:

µ̂(n) = U (M)
{
G ×3 U

(N)(n, :)
}
U (D)⊤ (29)

= U (M)W ′⊤
n U

(D)⊤ (30)

By truncating the basis matrices, an input utterance is decom-
posed as follows:

µ(new) = U (M)W ′⊤
(new)U

(D)⊤ + b (31)

U (M) ∈ RM×KM and U (D) ∈ RD×KD are the bilinear
basis matrices, W ′

(new) ∈ RKD×KM is the weight matrix
(KM ≤M,KD ≤ D). By using bilinear basis, dimensionality
reduction along the axis of the dimension of the mean vectors
is possible. Language/speaker representation based on bilinear
basis can be regarded as a constraint on i-vector and EVC.
W ′ can also be estimated based on a ML criterion and the

updating equation is as follows:

vec(Ŵ
′
)=

[
M∑

m=1

γ(tar)m U⊤
mUm⊗U(D)⊤Σ−1

m U(D)

]−1

vec(C) (32)

C =

T∑
t=1

M∑
m=1

γm,tU
(D)⊤Σ−1

m (Y
(tar)
t − b(0)m )Um (33)

V. EXPERIMENTAL EVALUATION FOR LID

A. Experimental conditions

To evaluate the proposed representation, LID experiments
were carried out. We used The National Institute of Standards
and Technology Language Recognition Evaluation (NIST
LRE) 2003/2005/2007 as the speech corpora. These contain
telephone conversation that have three types of duration of
3 sec, 10 sec and 30 sec. The number of target languages
is 14: Arabic, Bengali, Farsi, German, Japanese, Korean,
Russian, Spanish, Tamil, Thai, Vietnamese, Chinese, English,
and Hindustani.

We used 56-dimensional MFCC (7MFCC+49SDC) as raw
features, to which Cepstrum Mean Normalization (CMN) and
Vocal Tract Length Normalization (VTLN) were applied. A
diagonal-covariance UBM with 2048 mixtures was constructed
from 24,577 utterances. To construct bases parameters, 23,665
out of 24,577 utterances were utilized and then language
representation for each utterance were extracted. Table I shows
the number of dimension for each feature. Probabilistic Linear
Discriminant Analysis (PLDA) was used for classification;
LDA and whitening was applied for each representation as
preprocessing. For training of PLDA, 23,665 utterances were
used. 6,474 utterances were used as test data. Equal Error Rate
(EER) was used as evaluation criterion.

TABLE I
THE NUMBER OF DIMENSIONS OF EACH FEATURE.

Language Speaker
i-vector / EV-based 600 400
Tensor-based 1792 (= 56× 32) 1920 (= 60× 32)
Tensor-based bilinear 1568 (= 49× 32) 1440 (= 45× 32)

TABLE II
RESULTS OF LID TASK (EER [%]).

3s 10s 30s
i-vector 24.14 16.03 11.68
EV-based (MMSE) 27.25 18.12 12.56
EV-based (ML) 24.51 15.71 10.91
EV-based (MAP) 25.63 15.57 9.22
EV-based SAT (ML) 21.96 14.29 10.16
EV-based SAT (MAP) 22.39 13.52 11.05
Tensor-based (MMSE) 27.53 17.56 10.31
Tensor-based (ML) 28.38 18.59 13.86
Tensor-based (MAP) 30.58 19.79 13.28
Tensor-based bilinear (MMSE) 28.41 18.35 11.47
Tensor-based bilinear (ML) 28.63 19.22 14.03

B. Results

Table II shows the results of experiment. 3s, 10s, 30s mean
the duration of the duration. MMSE, ML, MAP mean the
criteria for representation. From Table II, SAT works well
in 3s and 10s cases for EV-based approaches. This suggest
that SAT works effectively in the case that the duration of
the session is short. Compared with all the representation, the
order from better to worse becomes EV-based, i-vector, and
tensor-based ones.

VI. EXPERIMENTAL EVALUATION FOR SR

A. Experimental conditions

As evaluation for SR, speaker recognition experiment using
JNAS database [13] was carried out. In this corpus, Utterances
recorded from 306 speakers (153 males and 153 females) by
headset (H) and desktop (D) microphones are included. In
the experiment, 120 speakers (60 males and 60 females) were
used.

20-dimensional MFCCs with their delta and acceleration
to which CMN was applied, were used. 2048 mixture UBM
was constructed by 37,200 utterances from 138 speakers
in JNAS. Table I shows the dimension of features. PLDA
was used as classifier. This experiment was done under
matched-microphone conditions (H-H, D-D) and mismatched-
microphone conditions (H-D, D-H). 30 utterance per speaker
was used for training, and 14,894 utterances in total were used
for test. EER was used as evaluation criterion.

B. Results

Table III shows the result. Different from the case of LID,
tensor-based bilinear representation based on MMSE criterion
achieved the best performance. This result suggest that rep-
resentation derived from tensor factor analysis captures the
essential information of speaker effectively.
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TABLE III
RESULTS OF SR TASK (EER [%]).

H-H H-D D-H D-D
i-vector 0.38 3.18 4.46 0.43
EV-based (MMSE) 0.35 2.67 3.18 0.37
EV-based (ML) 0.84 3.58 4.86 0.61
EV-based (MAP) 0.35 4.16 5.07 0.35
EV-based SAT (ML) 0.61 4.39 7.02 0.58
EV-based SAT (MAP) 0.56 4.29 6.19 0.56
Tensor-based (MMSE) 0.43 3.21 4.04 0.35
Tensor-based (ML) 2.72 5.72 7.17 2.04
Tensor-based (MAP) 0.40 4.99 5.97 0.39
Tensor-based bilinear (MMSE) 0.33 2.66 3.27 0.30
Tensor-based bilinear (ML) 2.21 5.07 6.32 1.63

VII. CONCLUSION

This paper has proposed a novel approach to speech repre-
sentation for both speaker recognition and language identifi-
cation by characterizing the entire feature space by a tensor.
An utterance is not modeled as its GMM-based supervector
but as its matrix and the entire set of utterances is modeled as
its tensor. By applying tensor factor analysis, we obtain a new
representation for an input utterance. Experimental evaluations
for speaker recognition and language identification show that
our proposed approach has effectiveness especially for the
speaker recognition task.
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