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Abstract—In the field of music information retrieval (MIR), 

audio spectrogram can carry a great deal of information about the 
music content so as to be a robust visual representation for music 
signal. Recently, many research literatures show that 
convolutional neural network (CNN) has ability to capture 
indicative acoustic patterns from spectrogram input, and make 
remarkable performance on MIR-related tasks such as music 
genre classification (MGC). In this paper, we continue the line of 
research to explore different types of spectrograms, to emphasize 
different characteristics of music genre for the MGC task. To 
jointly leverage all of these features, in this paper, a mixture of 
experts (MoE) system is proposed. More formally, a set of MGC 
models can be derived by using the various spectrogram-based 
statistics. Then we treat each model as an individual expert. 
Accordingly, a neural mixture model is introduced to collect and 
compile the predictions from the expert models, and then to 
output a final decision for a given music to be predicted. In a 
nutshell, our major contributions in this paper are at least twofold. 
On one hand, we comprehensively examine several spectrogram-
based features for the MGC task. On the other hand, a neural-
based MoE system, which can dynamically decide the weighting 
factor for each expert system, is proposed to enhance the 
performance of the MGC task 1 . Experimental results 
demonstrate that the proposed framework not only can achieve 
success results than individual expert models, but has ability to 
provide a comparable classification accuracy to the SOTA 
systems. 

I INTRODUCTION 

In the context of MGC task, acoustic features can have a 
potent effect on the performance. For the past decades, 
numbers of the research literatures investigate multiple 
acoustic features which successfully applied to MIR-related 
tasks. In the conventional study, we extract different kinds of 
acoustic features from the audio signal by using spectral 
analysis, to provide robust representation such as octave-based 
spectral contrast (OSC), audio spectrum envelope (ASE) and 
Mel-frequency cepstral coefficients (MFCC) [1, 2]. Also, with 
musical knowledge and machine learning techniques, we can 
produce higher-level features from music signals like chord [3]. 
Meanwhile, to deal with the features with high dimensionality 
such as spectrogram, one of the popular solutions is using PCA 

1 The source code is available at https://github.com/superlyy/apsipa_
2019. 

to drop the input data into a lower-dimensional space [24, 25], 
or constructing the codebook utilized by sparse coding 
algorithms [6]. Therefore, the aforementioned methods provide 
reduced feature vectors that can efficiently lower the 
computation burden for classifiers such as SVM [2, 6, 24], 
GMM [26], and KNN [1]. Because each kind of acoustic 
feature usually present various aspects of the music signal, such 
as timbral, rhythmic and pitch, it is reasonable that combining 
multiple acoustic features can improve MGC accuracy [4]. 
Besides, with different combination strategies on these acoustic 
features, the classification accuracy will be various on the 
MGC task. One of the relevant research literatures has studied 
both feature-level and decision-level methods for feature 
combination, the results show that stacked generalization has 
the best performance [2]. 

With the rapid growth of deep learning recently, deep neural 
networks (DNNs) start playing an important role in MIR-
related tasks. Convolutional neural network (CNN) is one of 
the popular architectures, which usually be used in automatic 
music tagging and the MGC tasks [8-11, 13, 14, 21]. 
Furthermore, CNN can be a robust feature extractor of 
spectrogram input. There has been research indicated that each 
of the CNN layers can find a different level of acoustic patterns 
from spectrogram input [7], and use activations of feature maps 
of multiple layers in pre-trained CNN to concatenate as a 
feature vector, which shows good performance in the MGC 
task [8]. There is a recent paper shows that even the filters in 
CNN are randomly weighted, it still can perform reasonably as 
a feature extractor [9]. Meanwhile, by using such as transfer 
learning or well-designed network architectures, CNN can gain 
extra performance improvements in the MGC task [8, 10, 11]. 
Besides, feature combination is also one of the popular 
approaches in deep learning structures: There has been used 
DNN for extracting spectral and temporal features from 
different source input, an expected performance gain is 
provided by combination of these two features as input of the 
classifier [12]; Or train two CNNs by different feature sets, 
provide better classification accuracy with late fusion strategy 
than each network themselves [13]. 
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Motivated by the well capturing ability of acoustic patterns 
on CNN, we plan to use different sources of spectrogram as our 
acoustic features, which include the spectrograms based on 
harmonic and percussive components, both of the features can 
provide significant improvement on the MGC task [14]; 
modulation spectrogram is being used for providing temporal 
dynamics. Also, we introduce MFCC as baseline feature. In our 
studied system, each of the acoustic features will train a 
corresponding CNN, then the well-trained CNN models are 
treated as experts from multiple acoustic feature domains. We 
expect that these expert models are designed for extracting 
different characteristics from the music signal, which means 
each expert network is able to decide the most probably music 
genre from the input data through its perspective. After that, 
three mixer models have been provided in the architecture of 
mixture of experts. We expect this architecture can provide a 
reasonable improvement in the MGC task. 

II. ACOUSTIC FEATURES 

A. Harmonic/Percussive Spectrogram 

Harmonic and percussive signal are containing a specific 
kind of the information about the original music signal, with 
the support that the shape of the spectral envelope of harmonics 
and percussion when they have been separated is useful for 
genre classification [15]. There are serval ways to implement 
Harmonic Percussive Source Separation (HPSS), one of the 
approaches by using median filtering shows faster and more 
effective than the others [16]. Firstly, this approach intuitively 
accept that stable harmonic or stationary components form 
horizontal ridges on the spectrogram, while percussive 
components from vertical ridges with a broadband frequency 
response. The concept of using median filters individually in 
the horizontal and vertical directions on the spectrogram which 

computed from music signal, to separate the spectrograms of 
harmonic and percussive patterns. Letting 𝑆𝑆(𝑓𝑓, 𝑡𝑡) represents an 
original power spectrogram of a given music signal computed 
by short time Fourier transform (STFT), the result of HPSS can 
satisfy the condition by 

𝑆𝑆(𝑓𝑓, 𝑡𝑡) = 𝐻𝐻(𝑓𝑓, 𝑡𝑡) + 𝑃𝑃(𝑓𝑓, 𝑡𝑡),   (1) 

where  𝐻𝐻(∙)  and 𝑃𝑃(∙)  represent harmonic power spectrogram 
and percussive power spectrogram, respectively. 𝑓𝑓 and 𝑡𝑡 
denote the index and time frame. Fig. 1 shows a power 
spectrogram generated from a music clip in log scaled, with its 
harmonic and percussive power spectrograms. 

B. Modulation spectrogram 

It is not only spectral features that are important but temporal 
features also play a key role in improvement for the MGC task. 
Base on the research from [12], the modulation spectrum is 
suitable for efficiently analyze the temporal dynamics from the 
data, and, besides it is simpler to compute than the other 
approaches. Although the temporal feature used by 
aforementioned research is based on cepstrogram modulation, 
we believe that it is sufficient to present investigate the 
temporal dynamics by modulating on the spectrogram. Given a 
normalized power spectrogram, which is calculated by its mean 
value 𝜇𝜇𝑆𝑆 and standard deviation 𝜎𝜎𝑆𝑆 as follows: 

𝑆𝑆̅(𝑓𝑓, 𝑡𝑡) = 𝑆𝑆(𝑓𝑓,𝑡𝑡)−𝜇𝜇𝑆𝑆
𝜎𝜎𝑆𝑆

.    (2) 

Then, the modulation spectrogram is calculated by applying 
discrete Fourier transform (DFT) on time domain as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓, 𝑣𝑣) = �∑ 𝑆𝑆̅(𝑓𝑓, 𝑡𝑡) 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑗𝑗 2𝜋𝜋𝑡𝑡𝜋𝜋
𝑇𝑇
�𝑇𝑇

𝑡𝑡=0 �, (3) 

where 𝑣𝑣 denotes the index of modulation frequency.  

C. MFCC 

As a popular used acoustic feature, MFCC adopted in many 
MIR tasks with providing a robust representation. We 
concatenate 20 MFCC and their first and second-order 
derivatives in a given time frame, to become our baseline 
feature. 

III. THE PROPOSED METHODOLOGIES 

A. Expert Model 

There is a MIR-related paper which listed several structures 
of CNN with a series of comparisons [17], one of the structures 
called ‘k2c2’, which consists of 5 convolutional layers of 3×3 
kernels and max-pooling pooling layer. The experiment results 
on music tagging task show that ‘k2c2’ has reliable 
performance especially when the structure parameters are 
larger than 0.5M. Besides, this structure also has ideal 
computation time and relatively fewer parameters than the 

 

Fig. 1   The log-scaled power spectrogram (upper) with its harmonic (middle) 
and percussive (lower) spectrogram from a 30-second blues music clip. 
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others. We modify the activation function as Softmax at the 
output layer of ‘k2c2’ due to MGC is a single-label 
classification task, then we use this as our CNN structure. We 
trained four CNNs with the acoustic features of original, 
harmonic, percussive and modulation spectrogram, 
respectively. Consequently, these CNN models are our expert 
models. 

B. Mixture of experts (MoE) 

To enhance the performance in the MGC task with expert 
models, a mixing structure is shown in Fig. 2. Firstly, we 
calculate four acoustic features from the given music signal for 
its CNN experts. Then, each of these experts can give a 
prediction by considering its own feature vector and passing a 
Softmax activation. The main idea of this strategy is combining 
expert models’ predictions with a desired mixture weight. For 
a given music signal, we use a mixer model to generate a 
corresponding weight to each expert model, these weights are 
satisfied with a constraint as follows: 

∑ 𝑔𝑔𝑚𝑚(𝑒𝑒) = 1𝑀𝑀
𝑚𝑚=1 , 0 ≤ 𝑔𝑔𝑚𝑚(𝑒𝑒) ≤ 1,  (4) 

where 𝑒𝑒 denotes the given music signal of the mixer model, 
and 𝑔𝑔𝑚𝑚(𝑒𝑒)  denotes the weight of 𝑚𝑚 -th expert model. That 
means this framework can measure how much confidence 
should put on the specific expert networks based on the input 
data. And the final decision 𝑦𝑦� of the given music signal 𝑒𝑒 can 
be determined as follows:  

𝑦𝑦�(𝑒𝑒) = ∑ 𝑔𝑔𝑚𝑚(𝑒𝑒)ℎ𝑚𝑚(𝑒𝑒)𝑀𝑀
𝑚𝑚=1 ,   (5) 

where ℎ𝑚𝑚  denotes the prediction of 𝑚𝑚-th expert model. The 
studied strategy is basically the same concept as MoE, which 
has been successfully used in many fields such as language 
modeling [23]. In our work, we choose the original 
spectrogram from a given music signal as input feature of the 
mixer model. We expect that the mixer model can learn the 
characteristic from the input feature, and find out which of the 
expert networks will most likely to give the right decision to its 
music genre. To this end, there are three structures of the mixer 
model considered:  

1. MoE with balanced weight (MoEB): The first structure 
will be intuitive, which is average the predictions of all 
the expert networks, or we can say that is combing each 
expert network with a balanced weight. 

2. MoE with CNN as a mixer model (MoEC): We try to 
use the same structure with the expert model, instead of 
the output is changed into the number of expert models. 
We expect that CNN has ability to dynamically decide 
the weights for the expert CNN models. 

3. MoE with RNN as a mixer model (MoER): Recurrent 
neural network (RNN) with gated recurrent unit (GRU) 
has been achieved successful results in many sequence 
modeling problems. In MIR tasks, it can be a good 
temporal summarizer on acoustic features [18]. We 
design an RNN structure which is shown in Fig. 3, 
which contains two layers of bidirectional of GRU (Bi-
GRU) units. The second GRU layer outputs the 
concatenated vector of last hidden states of both 
directions, then inputs to a dense layer for generating the 
mixture weights. The time step of RNN input will set to 
be the number of frames of the spectrograms. We expect 
that this mixer model can find the temporal pattern from 
the spectrum of each frame, in order to generate a proper 
weight for each of the expert models. 

For the MoEC and the MoER systems, it should be noted that 
the expert networks are pre-trained and fixed without fine-
tuned with the mixture model.  

IV. EXPERIMENTAL SETUP 

A. Data Preparation 

We perform our experiments on two different datasets: 

1. The GTZAN dataset has been very popular in the MIR 
field [19]. It consists of 1,000 30-second music clips, 
each clip is annotated with one of 10 genres, the quantity 
of each genre is balanced. because of the drawbacks 
such as artist repetition has been indicated [20], we 
decide to use two different partitioning methods in this 
dataset. Firstly, we use 10-fold cross-validation with 
stratified partitioning, which makes each of the folds 
preserved the percentage of samples for each class. For 
avoiding the repetition of artists across training, the 

 

Fig. 3   The proposed RNN-based mixer model. 

 

Fig. 2   Overview of the proposed framework. 
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second version called “fault-filtered” of the GTZAN 
dataset is used [21]. This version of partitioning 
removes 70 samples, which supported as replicas or 
distorted waveform, then the remaining samples are 
manually divided into training (443)/validation 
(197)/test (290) sets. 

2. Like the GTZAN dataset, the FMA dataset provides a 
sub dataset called FMA small, which contains 8,000 30-
second music clips, with 8 balanced genres [22]. 

B. Feature Configuration 

Before computing acoustic features, we resample all the 
music clips into 22,050Hz, mono signals. When using STFT to 
compute spectrogram, Hanning window will be chose. we set 
the window size as 1024 samples, with the hop size of 512 
samples, the values are in log-amplitude. We converted 
spectrogram features with 96 mel frequency bin. Therefore, the 
input feature matrix size of both original, harmonic and 
percussive spectrogram will be 96×1292, while due to the 
symmetry on modulation frequency domain, the size of the 
modulation spectrogram is set to be 96×646. Each value from 
the acoustic features is normalized by subtracting mean and 
divided by standard deviation, where the mean and the standard 
deviation are calculated from the feature values of each music 
clip. Both feature extracting and audio processing are 
implemented with LibROSA [27]. 

C. Model Configuration 

For CNN structure, the number of hidden units of five 
convolutional layers is (64, 128, 128, 192, 256). Max-pooling 
is applied after every convolution layer, in order to result the 
shape of feature maps to 1×1. For RNN structure, the hidden 
units of Bi-GRU layers and Dense layer are (64, 64, 32). 
Besides, batch normalization and ELU activation function are 
used in all the convolutional layers and dense layers. Both 
CNN and RNN are using Adam as the optimizer and cross-
entropy as the loss function. Each of the networks is trained 
over 50 epochs with the batch size of 16 in every epoch. All the 
models are built with Keras. 

 

V. RESULTS AND DISCUSSIONS 

The experimental results of each expert model (includes 
MFCC as baseline) and different MoE structures in each 
dataset or partitioning methods are shown in Table I. As we can 
see, both of the expert models deliver vary but reasonable 
performance. Overall results show that GTZAN (10-fold CV) 
can obtain the highest accuracy. Compare to another different 
partitioning method, the accuracy of fault-filtered version 
decreased in general, one of the main reasons is that the 10-fold 
CV version has the repetition of artist across its training and 
testing sets, which can make the models be able to capture 
similarity from music clips by their generated features. In the 
performance of each expert model, firstly, the expert model 
based on original the spectrogram serves a high and stable 
classification accuracy across all the datasets, one of the 
reasons is that most of the information on the music signal is 
preserved in the original spectrogram. Then the following part 
will be harmonic and percussive ones. We believe that these 
two separated components from the original spectrogram can 
be experts in conveying certain characteristics of music signal, 
which help decide its music genre. Although in FMA small, 
harmonic’s expert show relatively low result of 43.38%, and 
percussive one is even higher than original spectrogram, part 
of the reason is that the music genre such as electronic, hip-hop, 
pop or rock, which can be shown more discriminating in their 
percussive patterns, while the harmonic patterns will be 
confused with those genres. Besides, the expert model based 
on modulation spectrogram achieves the highest accuracy of 
55.63% in FMA small among the other expert models, this 
result is even better than two of the MoE structures, a possible 
reason is that many of the music genres in FMA small can be 
well explained by their temporal dynamics. Both of the 
aforementioned expert models can make a comparable 
performance to the MFCC one. Although MFCC is known to 
be a robust feature and relatively low data size, but with the 
help of CNN, many of the acoustic patterns can be extracted 
from those spectrogram inputs, which are helpful for 
containing a better result. From the results of proposed MoE 
structures, we can see that most of them make a noticeable 
improvement from the proposed expert models. MoEB 
implements a voting-like approach and serves as a baseline in 

TABLE I   PERFORMANCE OF THE PROPOSED FRAMEWORK. 
 

 FMA 
(small) 

GTZAN 
(fault-filtered) 

GTZAN 
(10-fold CV) 

original spec. 49.38% 62.07% 81.50% 
harmonic spec. 43.38% 61.03% 77.80% 
percussive spec. 50.88% 60.00% 79.30% 
modulation spec. 55.63% 58.62% 76.70% 
MFCC 47.13% 55.52% 78.70% 
MoEB 54.13% 65.17% 85.20% 
MoEC 55.63% 64.83% 83.80% 
MoER 55.88% 66.90% 86.40% 

 
 

TABLE II   COMPARISON TO PREVIOUS STATE-OF-THE-ARTS. 
 

 FMA 
(small) 

GTZAN 
(fault-filtered) 

GTZAN 
(10-fold CV) 

2D CNN [21] - 63.20% - 
temporal feature [12] - 65.90% 85.00% 
transfer learning [8] - - 89.80% 
multi-level and multi-
scale [10] - 72.00% - 

artist label [11] 56.87% 72.03% - 
The Proposed MoER 55.88% 66.90% 86.40% 
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MoE, the result proves that the ensemble of expert models has 
the ability to make a more stable prediction. Compare to MoEB, 
MoEC shows a performance degradation on GTZAN, we give 
the possible explanations are the insufficient data size for 
training the mixer model, or CNN will be hard to learn a proper 
way to generate the mixture weights based on the feature input. 
However, MoER can deliver the best performance in all of our 
experiments, the result indicated that the mixture weights are 
meaningful, and the temporal information learned by RNN 
which is helpful for mixer model to generate accurate weights. 

Finally, we make a comparison between the proposed 
framework with some state-of-the-arts in the MGC task. From 
Table II, our proposed approach can show better results than 
[12, 21]. Compare to [8, 10, 11], however, we still have some 
performance gaps between them. Part of the reason is that these 
researches use transfer learning techniques which pre-train 
their model on a large dataset such as Million Song Dataset to 
be their source task, which can effectively enhance the 
generalization ability of the models. 

VI. CONCLUSIONS 

In this paper, we explore various spectrogram-based acoustic 
features, explore different types of spectrograms, such as the 
harmonic and percussive components generated from the 
original spectrogram, to emphasize different characteristics of 
music genre for the MGC task. Besides, modulation from time 
domain of original spectrogram is also used, which is 
containing temporal dynamics of music signal. Meanwhile, an 
MoE system based on acoustic feature domain is studied on the 
MGC task. The experiments show that the system can make 
comparable improvement in the MGC task. In the future, we 
plan to investigate how effective that acoustic feature can 
specify certain music genres, and study more kinds of acoustic 
features. 
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