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Abstract—This paper presents an experimental analysis of
SHNU anti-spoofing systems for the ASVspoof 2019 challenge.
This challenge focused on countermeasures for three major
attack types, namely those stemming from the advanced tech-
nology of TTS, VC and replay spoofing attacks. According
to the type of attacks, the challenge was divided into two
independent sub-challenges, the logical access (LA) and phys-
ical access (PA). Results of different anti-spoofing technologies
on both sub-challenges were reported. Furthermore, the same
countermeasures were also evaluated on two previous challenges,
the ASVspoof 2015 and 2017. Experiments on cross-databases
showed that, it appeared hard to generalize the classifiers trained
from ASVspoof 2019 LA and PA databases to the previous chal-
lenges. The generalization ability of anti-spoofing technologies to
different, new and unknown conditions was still very challenging.
In addition, the effectiveness of different acoustic features were
also examined and reported. Finally, we investigated the linear
and an interfusing score-level fusion methods to individual
systems to achieve better performance.
Index Terms: anti-spoofing, logical access, physical access,
LCNN, AFN, ASVspoof

I. INTRODUCTION

In the last decades, the automatic speaker verification (ASV)
has attracted great research interests. Significant progress has
been obtained in this field, and it has been shown to offer
promising performance in many real-world applications, such
as access control, e-commerce, telephone banking, etc [1], [2].
However, these real applications require the ASV systems to
be robust against malicious attacks. Several recent studies have
shown the vulnerability of ASV systems to different spoofing
attacks without using any countermeasures [3], [4].

In the literature, the main types of spoofing attacks to an
ASV system are the impersonation, voice conversion (VC),
text-to-speech (TTS), and audio replay [4]. Impersonation
generally requires experts to mimic a the voice of target
speaker and hence there are limited data and research in the
past. With the rapid development of VC and TTS technologies,
the well-trained synthetic speech and converted voice is as
good as perceptually indistinguishable from bona fide speech.
They present a great threat to the ASV systems. Replay uses
a pre-recorded speech to spoof the ASV system.

During the recent years, substantial progress has been
achieved in the technology of spoofing speech detection,
both for the logical access and physical access tasks. To
detect the synthetic and voice converted speech, several new
features have been proposed and proved to be very effective,

such as the Constant Q Cepstral Coefficients (CQCC) [9],
the Inverted Mel Frequency Cepstral Coefficients (IMFCC)
features [10], the high-dimensional magnitude and phase
features [11], the spoofing-vector [12], etc. Moreover, the
adaptive weighting and clustering framework [8], combination
of the linear and nonlinear classifiers [13] have also shown
great improvements. To counteract the audio replay attacks,
the best system submitted to the ASVspoof 2017 Challenge
is the Light Convolutional Neural Networks (LCNN) anti-
spoofing system [14]. The recent proposed Attentive Filtering
Network (AFN) [15] has also been proved to be effective.
Other researches focused on the new feature extraction and
comparison, such as the source and instantaneous frequency
and cepstral features (IFCC) [16], the linear frequency residual
cepstral features[17], the variable length energy separation
algorithm (VESA) based features [18] and different feature
analysis[19], etc.

In this paper, we describes the Shanghai Normal University
(SHNU) teams effort in participation of both the PA and LA
sub-challenges in ASVspoof 2019 Challenge1. And moreover,
we present an experimental study of different classifiers and
features used for detecting both the LA and PA spoofing
attacks. We employed the similar LCNN and AFN approaches
proposed in [14], [15] as our anti-spoofing classifiers, includ-
ing the Gaussian Mixture Models (GMMs) used in the official
baselines. To assess the generalization ability of classifiers
under mismatched data conditions, detail cross-database exper-
iments were performed. In addition, preliminary experiments
were performed to examine the behavior of different frequency
bands in the acoustic feature of log power magnitude spectrum
via Fast Fourier Transform [14]. Furthermore, the general
linear and an interfusing nonlinear methods were investigated
for system fusion.

The rest of the paper is organized as follows. The ASVspoof
2019 and previous two challenges are briefly introduced in
section 2. The overview of single systems and score fusion ap-
proaches are described in section 3, followed by experimental
results and discussions in section 4. Finally, conclusion and
future works are presented in section 5.

1http://www.asvspoof.org/
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II. TASK DESCRIPTION AND BASELINES

Before the ASVspoof 2019 Challenge, two previous chal-
lenges have been held. The ASVspoof 2015 Challenge [5]
was designed to find countermeasure solutions to classify
the bona fide (genuine) speech and spoofed speech produced
using either TTS or VC technologies. The ASVspoof 2017
Challenge [6] was designed to focus on the audio replay attack
detection. And the ASVspoof 2019 Challenge [7] extended
the previous challenges. It was the first challenge to focus on
countermeasures for all the VC, TTS and replay attacks. It
was divided into two sub-challenges. The logical access (LA)
sub-challenge was designed to focus on countermeasures for
the attacks stemming from up-to-date TTS and VC systems.
This sub-challenge aimed to determine whether the advances
in TTS and VC technology post a greater threat to ASV and
the reliability of spoofing countermeasures. While the physical
access (PA) sub-challenge focused on the replay spoofing
countermeasures. Compared with the replay spoofing created
from uncontrolled setup in ASVspoof 2017, the replay attacks
in ASVspoof 2019 was simulated using a range of real replay
devices and carefully controlled acoustic conditions. This sub-
challenge aimed to provide a better assessment of replay
spoofing countermeasures, and brought new insights into the
replay spoofing problem.

The LA sub-challenge: Compared with the 10 spoof-
ing types in ASVspoof 2015[5], the spoofed utterances of
LA sub-challenge in ASVspoof 2019 were the well-trained
synthetic speech and converted voice produced with today’s
technology[7]. They were now perceptually indistinguishable
from bona fide speech. The greatly improved naturalness
and speaker similarity of these utterances pose substantial
threats to the reliability of ASV. This sub-challenge contained
training, development and evaluation partitions. The genuine
speech was collected from 107 speakers (46 male, 61 female)
and with no significant channel or background noise effects.
Spoofed speech was generated from the genuine data using a
number of different spoofing algorithms. There was no speaker
overlap across the three subsets regarding target speakers used
in voice conversion or TTS adaptation Each spoofed utterance
of training data was generated according to one of 2 voice
conversion and 4 speech synthesis algorithms. Spoofed speech
of development data was generated according to one of the
same spoofing algorithms used to generate the training dataset.
The spoofing algorithms used to create the evaluation dataset
were variants of the spoofing algorithms used to create the
development dataset.

The PA sub-challenge: The speech of replay attacks in
ASVspoof 2017 was created from the real re-presentation and
re-recording of a base corpus [20] in a somewhat uncontrolled
setup. This practice setup made results somewhat difficult
to analyze. However, in order to improve the 2017 dataset,
the 2019 edition was based upon simulated and carefully
controlled acoustic and replay configurations. For the PA sub-
challenge, the training and development data was created ac-
cording to a total of 27 different acoustic configurations. They

comprised an exhaustive combination of 3 room sizes, 3 levels
of reverberation and 3 speaker-to-ASV microphone distances.
There were 9 different replay configurations, comprising the
3 categories of attacker-to-speaker recording distances, and 3
categories of loudspeaker quality. The training, development
and evaluation data partitions were generated according to the
same set of randomly selected acoustic and replay configura-
tions.

Performance measurements: As a comparison, we also
performed experiments on ASVspoof 2015 and 2017 to see the
model generalization to unseen conditions. For more details
of these tasks, the readers are refer to [5], [6] and the
evaluation plan of ASVspoof 2019 Challenge [7]. ASVspoof
2019 was the first time to use a new ASV-centric metric in
the form of the tandem decision cost function (t-DCF) [7].
The equal error rate (EER) used in previous challenges was
retained as a secondary performance measure. However, in
order to support applications beyond ASV and performance
comparison between cross ASV challenges, we only used EER
to measure our system performances in this study.

TABLE I
OFFICIAL RESULTS OF TWO BASELINE

COUNTERMEASURES FOR BOTH LA AND PA
SCENARIOS OF ASVSPOOF 2019, IN EER (%).

Task Baseline system Dev set Eval set

LA LFCC-GMM 2.71 8.09
CQCC-GMM 0.43 9.57

PA LFCC-GMM 11.96 13.54
CQCC-GMM 9.87 11.04

Baselines: Two official baseline systems were provided.
They were based on GMM classifier with two different
acoustic features, the linear frequency cesptral coefficients [10]
(LFCC) and CQCC. Table I showed the performance of these
baseline systems trained on the ASVspoof 2019 training set
and tested on the development and evaluation sets, for both
the logical and physical access conditions. From the EER, it
is clear to see that, the LA task is easier than the PA task.

III. SINGLE SYSTEMS AND FUSION METHODS

Two single systems were used in our experiments, one
was the system based on the Light Convolutional Neural
Networks (LCNN), which was the best system submitted to the
ASVspoof 2017 Challenge. The other was the system based
on the recently proposed Attentive Filtering Network (AFN).
We re-implemented the LCNN and AFN according to the
specification described in [14], [15] and the released github
repositories2.

A. LCNN system

As the proposed deep learning framework in [14], we used
the same normalized log power magnitude spectrum (logspec)
obtained via Fast Fourier Transform (FFT) as the LCNN input

2https://github.com/azraelkuan/asvspoof2017,
https://github.com/jefflai108/Attentive-Filtering-Network
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acoustic features. To obtain an unified time-frequency (T-F)
shape of input features. We truncated the normalized FFT
spectrograms along the time axis with the size of 864×400×1
as the input of the first convolution layer of LCNN. During
this procedure, short files were extended by repeating their
contents if necessary to match the required length.

TABLE II
THE STRUCTURE OF THE LCNN-4 MODEL.

Type Filter Size/Stride Output Size
Conv1 5× 5/1, 2 864× 400× 64
MFM1 - 864× 400× 32
Pool1 2× 2/2 432× 200× 32
Conv2 3× 3/1, 1 432× 200× 96
MFM2 - 432× 200× 48
Pool2 2× 2/2 216× 100× 48
Conv3 3× 3/1, 1 216× 100× 128
MFM3 - 216× 100× 64
Pool3 2× 2/2 108× 50× 64
Conv4 3× 3/1, 1 108× 50× 64
MFM4 - 108× 50× 32
Pool4 2× 2/2 54× 25× 32
FC1 - 512

MFM FC1 - 256

The LCNN classifier used for the spoofing detection was a
reduced CNN architecture with Max-Feature Map activation
(MFM). The MFM structure played a feature selector role in
the LCNN, because it suppresses a neuron by a competitive
relationship rather than the commonly threshold or bias used
in Rectified Linear Unit function. Two LCNN architectures
were investigated in our experiments, one was the LCNN-
9, it was the same as the LCNN architecture of Table 1 in
[14], but in our experiments, we set the outputs of FC6 layer
(fully connected layer) in the LCNN to 256 × 2, instead of
the 32× 2. The other architecture was the LCNN-4, it was a
revised version of the Light CNN-4 model used in work [21].
Details are shown in Table II.

B. AFN System

The Attentive Filtering Network (AFN) proposed in [15]
was composed of an attention-based filtering (AF) mechanism
and a classifier based on the Dilated Residual Network (DRN).
The AF enhances feature representations in both the frequency
and time domains prior to the DRN, and by including the
dilation in convolution, the generalization ability of neural
networks can be improved. The AFN input features were the
same logspecs for the LCNN system, but with a fixed unified
time-frequency map of 257× 1091 in our experiments. Other
details about the AFN can be found in [15].

C. System Fusion Methods

Our system fusion was performed on score-level in two
ways. One was the simplest linear fusion strategy. If the scores
of two sub-systems X and Y are Lx and Ly , then final score
is Lfused = α · Lx + (1 − α) · Ly with 0 ≤ α ≤ 1. The
other was the method of interfusing the confused region scores
(ICRS) proposed in our previous work [22]. Instead of fusing
the scores for all the test trials, we combined the scores of sub-
systems only at the confused score region using linear weights.

This region was estimated through a development test set. In
our experiments, the equal score fusion weights were used for
both the linear and ICRS fusion. However, we used different
confused score regions in ICRS fusion for LA and PA sub-
challenges. All of the confused score regions were tuned on
the development set, then these confused score regions were
directly applied to the evaluation set.

IV. EXPERIMENTS

In this paper, we first focus our efforts on finding the be-
havior of single systems with the same model architecture, but
trained for different anti-spoofing purpose. Then we examined
two system fusion methods on both LA and PA sub-challenges.
Moreover, we tested both the LCNN and AFN classifiers
on three cross-databases, including validation experiments of
logspec features with different frequency bands. The official
development set was used for model selection and for tuning
the combination weights for system fusion.

Since the logspec feature used in the LCNN systems is
different from the one we used in AFN system, in this
section, we use the “FFT” to represent the logspec feature
used in LCNN, and the “AFFT” to represent the logspec
feature used in AFN system. “Dev-LA”, “Dev-PA” refers to
the development set, and “Eval-LA”, “Eval-PA” refers to the
evaluation set for the LA and PA sub-challenges respectively
in ASVspoof 2019.

A. Experiments for the LA sub-challenge

TABLE III
RESULTS FOR THE LA SUB-CHALLENGE OF ASVSPOOF 2019, IN

EER (%).

System ID Individual System Dev-LA Eval-LA

L0 LFCC-GMM 2.86 8.09
L1 CQCC-GMM 0.43 9.57

L2 FFT-LCNN-4 0.24 25.64
L3 FFT-LCNN-9 0.11 23.21

L4 AFFT-AFN 0.00 15.98

Linear Fusion System Dev-LA set Eval-LA set

L0+L1 0.08 6.36
L1+L3 0.08 7.60
(L0+L1)+L3 0.05 5.82

ICRS Fusion System Dev-LA set Eval-LA set

L0+L1 0.04 6.01
L1+L3 (Primary) 0.05 23.21
(L0+L1)+L3 0.00 18.37

Results for the LA sub-challenge of ASVspoof 2019 are
shown in Table III. It is clear that our L2, L3 and L4 system
outperformed the L0 and L1 baseline system significantly
on the development set. However, the performance on the
Eval-LA set was worse than two baselines. It seems that the
FFT-LCNN-9 model overfited the training and development
datasets. In addition, the AFFT-AFN system obtained zero
errors on the Dev-LA set. This indicates that our LCNN-9
model was very sensitive to the training data and difficult to be
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generalized to new, unseen conditions. The excellent behavior
on the Dev-LA set dues to the fact that the spoofed speech in
both Dev-LA and training sets were generated from the same
spoofing algorithms.

Moreover, we can see that the ICRS score fusion is better
than the linear fusion on the Dev-LA set, however, bad results
are obtained on the Eval-LA set. This dues to the fact that in
the ICRS approach, the confused score region estimated on the
Dev-LA set was [0.15, 0.85], then when we applied this score
region to perform the ICRS on the Eval-LA set, there was only
a few trials (around 100 trials) of the first systems (L0, L1,
(L0+L1)) to be selected for score combination with the second
systems (L1, L3, L3). However, in the linear fusion, we used
equal weights to combined the scores of all the test trials.
That’s to say, our ICRS was also sensitive to the over-trained
speaker models and it was also over-tuned on the development
set of LA sub-challenge.

Submission to ASVspoof 2019: primary and single
system: our primary system submitted to the LA sub-challenge
was the combination of L1 and L3 using ICRS score fusion
method. And we submitted the FFT-LCNN-9 (L3) as our sin-
gle system because L4 system was trained after the submission
deadline.

B. Experiments for the PA sub-challenge

TABLE IV
RESULTS FOR THE PA SUB-CHALLENGE OF ASVSPOOF

2019, IN EER (%).

System ID Individual System Dev-PA Eval-PA

P0 FFT-LCNN-4 2.41 3.33
P1 FFT-LCNN-9 2.93 3.79
P2 AFFT-AFN 3.90 3.91

Linear Fusion system Dev-PA Eval-PA

P0+P1(Primary) 2.31 3.01
P1+P2 2.07 2.20
P0+P1+P2 1.65 2.19

ICRS Fusion system Dev-PA Eval-PA

P0+P1 2.16 3.03
P1+P2 1.85 2.17
P0+P1+P2 1.53 2.10

Results for the PA sub-challenge of ASVspoof 2019 are
shown in Table IV. It can be seen that the P0, P1 and P2
system achieved much better results than the baseline systems
shown in Table I. Such as, the P0 system achieved relative 75%
EER reduction than the best CQCC-GMM baseline system.
Furthermore, from both the linear and ICRS score fusion, we
can see that the complementary information between P1 and
P2 is bigger than the one between P1 and P0. It indicates that
the LCNN-4 and LCNN-9 model learns almost the same thing
with similar network architectures. And consistently, the ICRS
score fusion was still a little bit better than the linear fusion
on the development and evaluation sets for PA sub-challenge,
even the confused score region tuned on the Dev-PA was [e-
10, 0.99]. Moreover, different from the observation on LA

sub-challenge, the performance gap between the Dev-PA and
Eval-PA is very small. This may due to the small variations in
acoustic and replay configuration for the training, development
and evaluation datasets.

Submission to ASVspoof 2019: primary and single
system: Since the AFFT-AFN system was finished after the
submission deadline, for the PA sub-challenge, we submitted
the FFT-LCNN-9 as the single system and the linear combi-
nation of P0 and P1 as our primary system.

C. Cross-database Experiments

Table V shows the results for LA scenarios on the ASVspoof
2015 and LA sub-challenge of ASVspoof 2019. The “ASV15”
and “LA19” refer to the training data provided by these two
challenges. “Dev-15” and “Eval-15” refer to the development
and evaluation set under the required common condition in
ASVspoof 2015. We are disappointed to find that the classifiers
trained from the ASV15 and LA19 have no generalization
ability to cross-database test sets, even they are all under
LA scenarios. It indicates that both the LCNN and AFN
models were over-trained. However, after combing the ASV15
and LA19 together to train the models, the performance on
each self condition test set was still not improved, but the
performance of cross-dataset test was significantly improved.
This means that the countermeasures are very sensitive to the
training data and difficult to be generalized well to unseen
conditions.

TABLE V
EER% RESULTS FOR LA SCENARIOS, USING LCNN-9 AND AFN SYSTEMS.

System Training data Dev-15 Eval-15 Dev-LA Eval-LA

FFT-LCNN-9
ASV15 0.05 0.31 55.82 61.34
LA19 67.97 70.80 0.11 23.21

LA19+ASV15 0.08 1.92 0.19 15.24

AFFT-AFN
ASV15 0.06 4.20 51.00 44.55
LA19 46.87 46.06 0.00 15.98

LA19+ASV15 0.09 1.80 0.00 12.05

Table VI shows the EERs of cross-database experiments
for the PA scenarios in ASVspoof 2017 and PA sub-challenge
of ASVspoof 2019. The “ASV17” and “PA19” refer to the
training data provided by these two PA challenges. “Dev-
17” and “Eval-17” refer to the development and evaluation
set under the required common condition in ASVspoof 2017.
As in Table V, the similar disappointing cross-database test
observations were obtained in Table VI. However, the perfor-
mance gains obtained from the training data combination are
not significant as in Table V, although the EERs on Dev-PA
and Eval-PA were reduced from 3.9% to 3.03% and 3.90%
to 3.08%. This is because the training utterances of ASV17
was only around 6.3% of the training data in PA19, while
the ratio of training data size between ASV15 and LA19 was
more balanced.

Table VII shows the EERs for cross-database experiments
in PA scenarios, using the FFT-LCNN-9 system. We found
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TABLE VI
EER% FOR PA SCENARIOS, USING AFFT- AFN SYSTEM.

Training data Dev-17 Eval-17 Dev-PA Eval-PA

ASV17 8.00 12.50 51.00 45.11
PA19 57.00 60.00 3.90 3.91

PA19+ASV17 21.57 27.58 3.03 3.08

that the “FFT” features with frequency range of 0-4khz, 6k-
8khz achieved the best results for the Dev-17 in ASVspoof
2017, and the cross-database test on Dev-17 and Eval-17 using
models trained from PA19. However, the performance gains
were not consistent when it was generalized to the Eval-17
and Dev-PA test sets. Furthermore, when we compared the
3rd line of Table VI and the last line of Table VII, it seems
that the LCNN-9 model was more robust to the cross-database
tests than the AFN model.

TABLE VII
EER% FOR PA SCENARIOS, USING FFT-LCNN-9 SYSTEM.

Training data fmin-fmax Dev-17 Eval-17 Dev-PA Eval-PA

ASV17 0-8khz 6.80 14.50 45.00 48.23
0-4khz 15.26 23.67 39.61 46.28
6k-8khz 9.80 19.80 55.00 56.43
0-4khz, 2.96 15.87 64.20 68.706k-8khz

PA19
0-8khz 28.00 45.00 2.93 3.79
0-4khz, 25.26 38.83 3.87 5.116khz-8khz

PA19+ ASV17 0-8khz 10.26 23.00 4.55 5.78

V. CONCLUSION

In this paper, we have presented the anti-spoofing ap-
proaches used in SHNU system for the ASVspoof 2019
Challenge. Detail experimental results and analysis have been
demonstrated, both for LA and PA sub-challenges and cross-
database experiments. Our analysis showed that the classifiers
based on LCNN and AFN were very vulnerable to unseen
conditions. And they were very easily to be over-trained.
From the cross-database experiments, we found that the most
discriminative information contained in different frequency
bands for the PA tasks in the ASVspoof 2017 and 2019
challenges. Moreover, results showed that the ICRS score
fusion outperformed the linear fusion significantly, the com-
plementary information between LCNN and AFN was very
big. Future works will focus on improving the generalization
ability of anti-spoofing countermeasures.
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