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Abstract—Utterance-level permutation invariant training
(uPIT) has achieved promising progress on single-channel multi-
talker speech separation task. Long short-term memory (LSTM)
and bidirectional LSTM (BLSTM) are widely used as the
separation networks of uPIT, i.e. uPIT-LSTM and uPIT-BLSTM.
uPIT-LSTM has lower latency but worse performance, while
uPIT-BLSTM has better performance but higher latency. In this
paper, we propose using latency-controlled BLSTM (LC-BLSTM)
during inference to fulfill low-latency and good-performance
speech separation. To find a better training strategy for BLSTM-
based separation network, chunk-level PIT (cPIT) and uPIT are
compared. The experimental results show that uPIT outperforms
cPIT when LC-BLSTM is used during inference. It is also found
that the inter-chunk speaker tracing (ST) can further improve
the separation performance of uPIT-LC-BLSTM. Evaluated on
the WSJ0 two-talker mixed-speech separation task, the absolute
gap of signal-to-distortion ratio (SDR) between uPIT-BLSTM
and uPIT-LC-BLSTM is reduced to within 0.7 dB.

Index Terms: multi-talker speech separation, permutation

invariant training, latency-controlled BLSTM, speaker tracing

I. INTRODUCTION

Many advancements have been observed for monaural
multi-talker speech separation [1], [2], [3], [4], [5], [6], [7],
[8], [9], known as cocktail party problem [10], which is
meaningful to many practical applications, such as human-
machine interaction, automatic meeting transcription etc. With
the development of deep learning[11], a lot of innovations have
been proposed, such as deep clustering [3], [4], deep attractor
network [5], time-domain audio separation network [6], [9]
and permutation invariant training (PIT) [7], [8].

Deep clustering [3], [4] projects the time-frequency (TF)
units into an embedding space, with a clustering algorithm to
generate a partition of TF units, which assumes that each bin
belongs to only one speaker. However, the separation under
the embedding space may be not the optimal technique.

Deep attractor network [5] also learns a high-dimensional
representation of the mixed speech with some attractor points
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in the embedding space to attract all the TF units correspond-
ing to the target speaker. However, the estimation of attractor
points has a high computational cost.

PIT [7] is an end-to-end speech separation method, which
gives an elegant solution to the training label permutation
problem [5], [7]. It is extended to utterance-level PIT (uPIT)
[8] with an utterance-level cost function to further improve the
performance. Because uPIT is simple and well-performed, it
draws a lot of attention [6], [9], [12], [13], [14], [15], [16],
[17], [18], [19]. LSTM [20], [21], [22] and BLSTM [23],
[24] are widely used for uPIT to exploit utterance-level long
time dependency. Although uPIT-BLSTM outperforms uPIT-
LSTM, its inference latency is as long as the utterance, which
hampers its applications in many scenarios.

To reduce the latency of BLSTM-based acoustic model on
automatic speech recognition (ASR) tasks, context-sensitive
chunk (CSC) [25], which is the chunk with appended con-
textual frames, is proposed for both training and decoding. In
[26], CSC-BLSTM is extended to latency-controlled BLSTM
(LC-BLSTM), which directly carries over the left contextual
information from previous chunk of the same utterance to
reduce the computational cost and improve the recognition
accuracy.

In this paper, inspired by LC-BLSTM-based acoustic model
on ASR tasks, uPIT-LC-BLSTM for low-latency speech sep-
aration is proposed, which splits an utterance into non-
overlapping chunks with future contextual frames during infer-
ence to reduce the latency from utterance-level to chunk-level.
The chunk-level PIT (cPIT) of BLSTM is also proposed, but
the preliminary experiments indicate that cPIT is inferior to
uPIT. uPIT-LC-BLSTM propagates BLSTM’s forward hidden
states across chunks, which helps keep the speaker consistency
across chunks. Meanwhile, an inter-chunk speaker tracing (ST)
algorithm is proposed to further improve the performance
of uPIT-LC-BLSTM. Experiments evaluated on the WSJO
two-talker mixed-speech separation task show that uPIT-LC-
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BLSTM with ST only loses a little when compared to uPIT-
BLSTM.

The paper starts by briefly describing prior work in Section
II. The cPIT, uPIT-LC-BLSTM and speaker tracing algorithm
are described in Section III. The experimental setup and
results are discussed in Section IV. Section V presents the
conclusions.

II. PRIOR WORK
A. Monaural Speech Separation

The goal of single-channel multi-talker speech separation
is to separate the individual source signals from the mixed
audio. Let us denote S source signals as X4(t),s = 1,...,5
and the microphone receives mixed audio y(t) = Zle X, (t).
The separation is often carried out in the time-frequency (TF)
domain, where the task is to reconstruct the short-time Fourier
transform (STFT) of each individual source signal. The STFT
of the mixed signal is Y (¢, f) = Zle X;(t, f), where Y(¢, f)
is the TF unit at frame ¢ and frequency f.

The STFT reconstruction of each source can be done by
estimating S masks Ms(t, f),s = 1,...,.S. We use phase
sensitive mask (PSM) here: M, (¢, f) = W cos(by(t, f)—
Ox.(t, f)), where |Y| and 6y are the magnitude and phase of Y
respectively. With an estimated mask Mj(¢, f) and the mixed
STFT, the STFT of source s is X, (£, f) = M,(t, f)-|Y (¢, f)|-
eI (tF) where j is imaginary unit.

The straightforward mask-based separation methods based
on deep learning are to use neural network to estimate masks
for S source signals and then minimize the mean square error
(MSE) between estimated and target magnitudes. For PSM,
the cost function is as follows:

S
1 ~
Tpsm = 5 > M 0 [Y] = X[ 0 cos(y — 0x.)|IF (1)
s=1

where B =T x F' x S is the total number of TF units, o is
the element-wise product and || - || is the Frobenius norm.

B. Utterance-level Permutation Invariant Training

The cost function mentioned above is a good way for some
simple cases. For example, when a priori convention can be
learned, we can force the speakers with higher energy (or
male speakers) to be the first output, and those with lower
energy (or female speakers) to be the second output. However,
when the energy difference is small or two speakers have the
same gender, a problem named label permutation [5], [7] is
introduced, where the permutation of two output streams is
unknown.

PIT [7] has eliminated the label permutation problem, while
it faces another problem named speaker tracing, which is
solved by extending PIT with an utterance-level cost function,
i.e. uPIT [8], to force the separation of the same speaker
into the same output stream. The cost function of uPIT is
as follows:

S
1 ~
J=5 > M 0 [Y] = [X[ge(s) © cos(By = bx,,..,))I[F ()
s=1
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Fig. 1. The architecture of cPIT, whose main idea is to split an utterance
into chunks. The main chunk has N frames, with appended N; left and N,
right contextual frames. For the first/last chunk of each utterance, no left/right
contextual frames are appended. The appended frames are only used to provide
context information and do not generate error signals during training. LC-
BLSTM does not need left contextual frames.

where ¢* is the permutation that minimizes the separation
error:

S
* = i M, o Y] — X - 2
¢ argggggl\ s 0 [Y] = [Xls o cos(Oy = Ox,)I[7 3)

where P is the set of all S! permutations. As illustrated
in the area surrounded by dotted lines in Figure 1, PIT
computes MSE between estimated and target magnitudes using
all possible permutations, and the minimum error is used for
back propagation.

C. CSC-BLSTM and LC-BLSTM

BLSTM is often used in uPIT-based speech separation
systems for its capacity of modeling long time dependency
in forward and backward directions [8], [13], [12], [14], [15],
[16], [17], [18]. BLSTM has a high latency as long as the
utterance. Since BLSTM is one of the state-of-the-art acoustic
models on ASR tasks [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], there have been some relative works to address
the latency problem [25], [26], [33].

In [25], context-sensitive chunk (CSC) with left and right
contextual frames to initialize the forward and backward
LSTM is used for both training and decoding, which reduces
the decoding latency from utterance-level to chunk-level. CSC-
BLSTM is extended to LC-BLSTM by directly carrying over
the left contextual information from previous chunk of the
same utterance into current chunk [26], where the latency can
be determined by the number of right contextual frames and
modified by users to get a trade-off between performance and
latency.
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TABLE I
FOR SIMPLICITY AND CLARITY, SOME DENOTATIONS ARE LISTED.

18-21 November 2019, Lanzhou, China

TABLE II
SDR IMPROVEMENTS (DB) FOR ORIGINAL MIXTURES AND
UPIT-(B)LSTM BASELINES. M/F STANDS FOR MALE/FEMALE.

Denotation Model Training Strategy Inferring Method
uPIT-LSTM LSTM utterance-level PIT | utterance-level
uPIT-BLSTM utterance-level
uPIT-CSC-BLSTM BLSTM utterance-level PIT chunk-level (CSC)
uPIT-LC-BLSTM chunk-level (LC)
cPIT-BLSTM utterance-level
cPIT-CSC-BLSTM BLSTM chunk-level PIT chunk-level (CSC)
cPIT-LC-BLSTM chunk-level (LC)

PIT Model Average M-F F-F M-M
Mixtures 0.06 0.06 0.07 0.06
uPIT-LSTM [8] 7.0 - - -
uPIT-BLSTM [8] 9.4 - - -
Our uPIT-LSTM 7.16 9.02 3.80 5.77
Our uPIT-BLSTM 9.46 1090  7.61 8.11

III. PROPOSED METHODS
A. Chunk-level PIT

As illustrated in Figure 1, the proposed cPIT splits an
utterance into context-sensitive chunks, where main chunks
(without contextual frames) do not overlap. Since the lengths
of chunks are very close (no longer than N; + N + N,.), we
do not need to do zero padding frequently during training,
so the training can be sped up significantly when compared
to uPIT. Besides, we evaluate whether cPIT is beneficial for
chunk-level inference.

B. cPIT-LC-BLSTM and uPIT-LC-BLSTM

Inference can also be done at the utterance level or chunk
level. If we simply infer at the chunk level, i.e. use CSC-
BLSTM, the output streams of main chunks in the same utter-
ance are spliced to compose utterance-level separated results.
However, permutation may change across neighboring chunks.
For instance, in two-speaker case, the output permutation may
be 1-1 (the first output stream corresponds to the first speaker)
and 2-2 in previous chunk, while it may change to 1-2 (the
first output stream corresponds to the second speaker) and 2-1
in current chunk. If the output streams of these two chunks
are simply spliced, the separated speech may face the speaker
inconsistency problem.

The first proposed method to alleviate the problem is to
replace CSC-BLSTM with LC-BLSTM. The only difference
between them is that LC-BLSTM copies the forward hidden
states from previous chunk directly and does not need left
contextual frames, while CSC-BLSTM uses left contextual
frames to initialize forward LSTM. They both need right
contextual frames to initialize backward LSTM. There are two
advantages in using LC-BLSTM. Firstly, computational cost is
reduced by m with the removing the left initialization
operation. Secondly, it helps keep the forward hidden states
continuous across neighboring chunks, which is beneficial for
modeling a broader left context and to some extent alleviates
the speaker inconsistency problem.

With the model trained at the chunk level or utterance level,
cPIT-LC-BLSTM or uPIT-LC-BLSTM method is obtained.
Besides, some other denotations are also listed in Table I.

C. Inter-chunk Speaker Tracing

In [7], there is a huge performance gap between default
assign (without ST) and optimal assign (assuming that all
speakers are correctly traced), which can be reduced with ST
algorithms.

In this paper, a simple ST algorithm is adopted to exploit the
overlapping frames between two neighboring chunks. Let us
denote O} _; and O?_; as two output streams of overlapping
frames in previous chunk, and O; and O as those in current
chunk. We compute pairwise MSE as PIT does:

Ey = MSE(O;_;, 0;) + MSE(O}_;, O7) €5
E; = MSE(O;_;, 07) + MSE(O}_;, O;) (5)

If E1 > aF,, we consider there exists a change of output
permutation, where « is the penalty factor and set to 2.0 by
default. There are two reasons to set a to 2.0 instead of 1.0.
Firstly, we believe that the probability of permutation changing
is smaller than that of the same permutation, especially when
LC-BLSTM is used. Secondly, more robustness is added into
the system. For example, if both speakers are silent in the
overlapping frames, the two output streams are almost similar,
and then setting a to 1.0 may lead to a false detection of
permutation changing.

1V. EXPERIMENTS AND RESULTS
A. Experimental Setup

The dataset is the same as the two-talker mixed dataset in
[31, [4], [6], [7], [8], except that the sample rate is 16 kHz. It is
generated by mixing the utterances in WSJO corpus at various
signal-to-noise ratios uniformly chosen between 0 dB and 5
dB, and has 20k, 5k and 3k mixtures for training, validation
and testing respectively. The 30-hour training set and 10-hour
validation set are generated from si_tr_s using 49 male and
51 female speakers. The 5-hour testing set is generated from
si_dt_05 and si_et_05 using 16 speakers.

The input to the model is the magnitude of mixture’s STFT,
which is extracted with a frame size 32 ms and 16 ms shift,
and has 257 frequency sub-band. The PIT model has a fully-
connected layer, 3 (B)LSTM layers and two output layers. The
dimension of LSTM cell is 640, so each BLSTM layer has
1280 units. We use ReLLU [34] as the activation function of two
output layers, and two output masks have the same dimension
as that of input. The input mixed magnitude is multiplied by
two masks respectively to get two separated magnitudes, and
then use the phase of mixed speech and inverse STFT to get
the separated audios. Signal-to-distortion ratio (SDR) [35] is
used to evaluate the performance of separation.

Tensorflow [36] is used to build the systems. The validation
set is only used for tuning the learning rate as it will be halved
by 0.7 when the loss on validation set increases. The initial
learning rate is 0.0005. Dropout is applied to BLSTM layers
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TABLE IIT
AVERAGE SDR IMPROVEMENTS (DB) FOR BLSTM TRAINED WITH CPIT
OR UPIT. SPEAKER TRACING (ST) IS USED TO IMPROVE THE
PERFORMANCE OF CSC-BLSTM AND LC-BLSTM. THE ABSOLUTE GAP
(ABS. GAP) IS COMPARED TO UPIT-BLSTM.

Method SDR  Abs. Gap
cPIT-CSC-BLSTM 8.00 -1.46
cPIT-CSC-BLSTM + ST 8.72 -0.74
cPIT-LC-BLSTM 8.61 -0.85
cPIT-LC-BLSTM + ST 8.71 -0.75
cPIT-BLSTM 8.73 -0.73
uPIT-CSC-BLSTM 8.09 -1.37
uPIT-CSC-BLSTM + ST | 9.10 -0.36
uPIT-LC-BLSTM 8.98 -0.48
uPIT-LC-BLSTM + ST 9.16 -0.30
uPIT-BLSTM 9.46 -

with a rate 0.5. For faster evaluation, all models are trained for
32 epochs. When training at the utterance level, each minibatch
contains 10 random utterances. When training at the chunk
level, each minibatch contains 100 random chunks.

B. uPIT Baselines

Table II presents the SDR improvements of baseline uPIT-
(B)LSTM. It is obvious that uPIT-BLSTM is far better than
uPIT-LSTM. It is also noticed that the same-gender sepa-
ration is more difficult, especially female-female separation.
Although the size of our model is smaller than that in [8]
and we trained for fewer epochs, the obtained results are
comparable with the baseline results in [8].

C. cPIT v.s. uPIT

As described before, the model for inference can be trained
at the utterance level or chunk level. We trained one BLSTM
at the chunk level with N; = 50, N = 100, N,, = 50, and
compared it with the baseline BLSTM trained at the utterance
level. We present the SDR results in Table III. Here, we
consider four inferring methods: cPIT-CSC-BLSTM, uPIT-
CSC-BLSTM, cPIT-BLSTM and uPIT-BLSTM. Generally, the
model trained at the utterance level performs better.

D. CSC-BLSTM v.s. LC-BLSTM

Here we compare two inferring methods: CSC-BLSTM
and LC-BLSTM. As illustrated in Table III, LC-BLSTM
outperforms CSC-BLSTM significantly, with improvements of
0.61 dB when using the model trained at the chunk level and
0.89 dB when using the model trained at the utterance level.
Besides, uPIT-LC-BLSTM outperforms cPIT-LC-BLSTM sig-
nificantly.

To prove LC-BLSTM helps alleviate the speaker inconsis-
tency problem, an example is shown in Figure 2. As illustrated,
there exists a change of permutation in the last chunk when
using uPIT-CSC-BLSTM. Also, the spectrograms separated by
uPIT-LC-BLSTM and uPIT-BLSTM are quite similar.

E. Inter-chunk Speaker Tracing
As illustrated in Table III, ST can further improve the
performance of both CSC-BLSTM and LC-BLSTM. For the

model trained at the chunk level, ST improves the cPIT-
CSC-BLSTM and cPIT-LC-BLSTM by 0.72 dB and 0.1 dB
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TABLE IV
AVERAGE SDR IMPROVEMENTS (DB) AND LATENCY (DEFINED AS
16 X N, MS AS THAT IN [26]) FOR UPIT-LC-BLSTM.

Method N,. SDR Abs. Gap Latency (ms)
uPIT-LC-BLSTM 0 8.76 -0.70 0

10 8.81 -0.55 160

25 9.02 -0.44 400
uPIT-LC-BLSTM + ST 35 9.07 -0.39 560

50 9.16 -0.30 800

100 9.26 -0.20 1600
uPIT-BLSTM 9.46 - utterance-level
uPIT-LSTM 7.16 -2.30 0

respectively. For the model trained at the utterance level, ST
improves the uPIT-CSC-BLSTM and uPIT-LC-BLSTM by
1.01 dB and 0.18 dB respectively, where the improvements
are more obvious.

Finally, uPIT-LC-BLSTM with ST achieves the best results
of chunk-level inference, which is slightly worse than that of
uPIT-BLSTM with a gap 0.3 dB, but is significantly better
than that of uPIT-LSTM with a gain of 2.0 dB.

FE. Trade-off between Latency and Performance

The latency of above chunk configuration is 50 x 16 ms
= 800 ms (defined as 16 x N, ms as that in [26]), which is
quite high for low-latency applications. Here, we keep V; and
N fixed (Note N; is useless for LC-BLSTM), and change the
value of IV,. to evaluate the performance with different latency,
and the results are illustrated in Table IV.

Generally, SDR decreases as N,. decreases. Note that when
N, = 0, we cannot perform ST for LC-BLSTM, since there is
no overlapping frame. Even though NV, is 0, uPIT-LC-BLSTM
still outperforms uPIT-LSTM with a gain of 1.6 dB, and has
a gap of 0.7 dB when compared to uPIT-BLSTM.

V. CONCLUSIONS

In this paper, we explored uPIT-LC-BLSTM on single-
channel multi-talker speech separation task to reduce the
latency of uPIT-BLSTM from utterance-level to chunk-level.
To reduce the SDR gap between uPIT-LC-BLSTM and uPIT-
BLSTM, inter-chunk speaker tracing was proposed to further
alleviate the permutation changing problem across neighboring
chunks. Besides, a trade-off between inference latency and
separation performance could be obtained according to the
actual demand by setting the number of right contextual
frames. In the future, we plan to combine the uPIT-LC-
BLSTM with cross entropy for directly multi-talker speech
recognition [12], [13], [14], [15], [16].
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