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Abstract—Despite deep learning being powerful to solve chal-
lenging problems, it is vulnerable towards adversarial examples.
To defend these adversarial blind spots in the deep learning,
researchers have proposed various approaches. However, conven-
tional adversarial training can reduce the accuracy significantly.
In this paper, we propose a method to incorporate quantized
images in both training and testing to maintain identical accuracy
for both normal and adversarial examples. Specifically, the
proposed method utilizes dithering during training and dithering
and linear quantization as a mean of adversarial filtering during
testing. We evaluated the proposed method with a well-known
strong first-order adversary and also conducted experiments
in different bit depths. The results suggest that the proposed
method achieves 87.14% and 85.28% accuracy for 2-bit and
1-bit dithered models for both normal and adversarial tests
on the noise level of 8. In addition, due to having identical
accuracy for both adversarial and normal tests, the proposed
method can detect adversarial examples if the original test
dataset is known. The code for the experiments is released on
https://github.com/fugokidi/one-bit-quantization.

I. INTRODUCTION

Deep Learning has been proven as a powerful tool to solve
difficult problems in computer vision as well as other fields [1].
The outstanding success has enabled deep learning models
to be deployed in security-critical applications such as face
recognition, biometric authentication, autonomous cars, spam
filters, malware detection systems, etc. These security-sensitive
applications demand deep learning to be reliable regardless
of its remarkable performance. Therefore, reliability in the
deep learning is quintessential in these security-important
applications.

Nevertheless, machine learning in general suffers from
two types of attacks: model inversion attacks and adversarial
attacks. In this work, we focus on adversarial attacks. Re-
searchers have already discovered that neural networks are
vulnerable to adversarial examples [2], [3], [4]. Imperceptible
adversarial perturbation causes neural networks to misclassify
with high confidence or force to classify a targeted label. In
computer vision, it is a clear threat. An example of adversarial
sample is depicted in Fig. 1 in which the network classifies
“dog” as “horse” with 100% confidence. One recent work
shows that adversarial example can be photographed with
smartphone and the taken picture can still fool the neural
network [5]. This is potentially dangerous especially for au-
tonomous cars. An attacker can potentially paint or use stickers
to cause the accidents [6]. Therefore, deep learning has got a
significant amount of attention and a lot of effort has been put

Fig. 1. Example of an adversarial example.

towards adversarial robustness.
Numerous ways of attacks and defenses have been proposed

towards adversarial examples such as [7], [8], [9]. We have
also hypothesized in our previous work that learnable image
encryption has certain degree of adversarial robustness [10].
However, the models trained to be robust against adversarial
examples drop the accuracy significantly. To the best of
our knowledge, there is no robust model that has the same
accuracy as the normal trained model. Recently, Miyazato et
al. introduced to use bit depth variation to improve adversarial
robustness while maintaining good accuracy [11]. But, their
work has been tested only on an easy adversary. Maintaining
accuracy and getting adversarial robustness is a growing con-
cern and on-going research in the deep learning community.

In this paper, we propose a method to achieve adversarial ro-
bustness in a specific scenario where the rightful user prepares
the test images and adversarial noise is added to the test images
before classification. Usually, this is the situation where the
model is deployed in the cloud server and it is illustrated
in Fig. 2. The main idea of the proposed method is to use
two types of quantization: quantization with dithering and
linear quantization. Specifically, the network is trained with
quantized images and the test quantized images are quantized
again to remove the adversarial noise during testing. We make
the following contributions in this paper.

• We propose a mechanism to train the network with
dithered images and to use linear quantization as an
adversarial filter over dithered images during testing.

• We evaluated the proposed method on different bit depths
with or without dithering against adversarial examples.

• Additionally, since our method produces the same accu-
racy even under attacks, inferrence to detect adversarial
examples can be made if the original test dataset is
known.
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Fig. 2. Attack scenario that the proposed method targets to defend against
adversarial examples.

II. RELATED WORK

A. Adversarial Attacks
Adversarial attacks are attacks towards neural networks

where an adversary can make the neural network misclassify
with high confidence or force the network to classify a targeted
label. In the context of image classification, the attacks are
carried out by inputting carefully designed perturbed images
to the neural network. These well-crafted perturbed images are
so called adversarial examples. Usually, adversarial examples
are generated by using optimization techniques to maximize
the loss of the objective. Based on the knowledge available
to an attacker, the attacks can be catagorized into two groups:
white-box and black-box. White-box attacks have direct access
to the model and black-box ones do not have.

The attacks with white-box settings include Fast Gradient
Sign Method (FGSM), Projected Gradient Descent (PGD), etc.
FGSM is a l∞-bounded attack with the goal of misclassifica-
tion poposed by Goodfellow at el al. [12]. It is computaionally
efficient and an adversarial example x′ can be generated as

x′ = x+ ε sign(∇xJ(θ, x, y)), (1)

where x is the original image, ε is the allowable perturbation
size and ∇xJ(θ, x, y) is the gradient of the loss with respect
to the input image. FGSM is a single step approach and the
extension of FGSM is Basic Iterative Method (BIM) [13]. It
is a straightforward way of applying FGSM multiple times
iteratively. The adversarial example on (t+1)th iteration with
BIM is

x′t+1 = clipx,ε(x
′
t + α sign(∇xJ(θ, x, y))), (2)

where clipx,ε(X) is to clip Xi,j to be in the range of
[xi,j − ε, xi,j + ε] and α is the step size. Madry et al. pointed
out that BIM is equivalent to Projected Gradient Descent
(PGD) [8]. The difference between BIM and PGD is that
PGD projects the perturbation back onto the l∞-norm ball
(i.e., clipping perturbation in the range of [−ε,+ε]) in each
step [7].

There are also black-box attacks where an attacker only
knows inputs and ouputs of the model. The adversarial exam-
ples are built by using a surrogate model instead of a real one.
Such black-box attacks were proposed in [6], [14].

B. Adversarial Defenses

The intuitive way of defending the adversarial examples
is including adversarial examples in the training process. It
is known as adversarial training. Early work [12] suggested
to use adversarial objective function during the training that
works as an effective regularizer. However, such a trained
model still cannot resist stronger adversaries such as PGD. One
of the other state-of-the-art methods is PGD training [8]. The
basic idea is to train the network with PGD perturbed input.
Nevertheless, PGD training is computationally expensive and
drops the accuracy significantly. From the MIT MadryLab
CIFAR10 Challenge leaderboard, the accuracy of the adver-
sarially trained model against 20-step PGD is 47.04% [15].

To improve adversarial robustness while maintaining the
accuracy, Miyazato et al. proposed to use quantized images
that maximizes the loss during the training process [11]. Their
method is basically to use quantized images solely in the
training process and was tested on FGSM only. FGSM is
fast, but not a reliable adversary. Our experiments proved
that the models trained with even severely quantized images
(i.e., 1 to 2-bit quantization) cannot resist PGD attack without
reinforcing our proposed method (i.e., linear quantization on
dithered adversarial examples). Therefore, the method pro-
posed by Miyazato et al. [11] is not robust against PGD attack.
In contrast, our method requires to use dithered images in both
training and testing. The linear quantization in the proposed
method removes adversarial noise completely.

There are other defense mechanisms such as defensive dis-
tillation where two models are used to train the network [16].
The first model is trained by using hard labels and the second
one is trained to predict the probabilities of the first model.
Nonetheless, it was reported that defensive distillation is not
robust against adversarial examples [17].

III. PROPOSED METHOD

The architecture of the proposed method is shown in Fig. 3.
The proposed method requires to use quantized images in
training and testing. There are two types of quantization:
quantization with dithering and linear quantization. Dithering
radomizes the quantization error and enhances visual quality
especially on low bit depth quantization. Therefore, models
trained with dithered images result in better accuracy. Linear
quantization is applied in the proposed method to filter adver-
sarial noise.

As shown in Fig. 3, dithered images are used to train the
network. For testing phase, test images are also dithered. In
adversarial settings, the perturbed dithered images are linearly
quantized. This linear quantization removes the adversarial
noise resulting the exact same accuracy as testing with clean
images.

IV. EXPERIMENTAL RESULTS

A. Setup

We used CIFAR10 [18] dataset with batch size of 128.
Floyd-Steinberg algorithm [19] was employed to dither images
in the proposed method. All the images in the dataset for
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Fig. 3. Training and test phase of the proposed method.

all cases were in the range of [0, 1] with live augumentation
(random cropping with padding = 4 and random horizontal
flip). However, there was no prior normalization.

For the network, we deployed deep residual network, specif-
ically ResNet20 [20] on PyTorch platform. The network was
trained for 160 epochs with stochastic gradient descent opti-
mization with the initial learning rate of 0.1. The step learning
rate scheduler was used with the parameters (lr steps =
40, gamma = 0.1). The weight decay and momentum were
configured with 0.0001 and 0.9 respectively.

The settings used in adversarial testing are adapted from
Madry Lab CIFAR10 challenge [15]. PGD attack with pertur-
bation size ε = 8/255 and step size α = 2/255 was used for
20 iterations to evaluate the robustness of the trained models.

B. Experiments

We trained the network with quantized images in different
bit depths with or without dithering resulting a total of 15
models. The models were trained in each bit depth (i.e., 1
to 7-bit) with and without dithering. The non-quantized 8-bit
images are also used to train a 8-bit model.

To observe the performance of each model, we evaluated
each model with test images in different bit depths that are
quantized with or without dithering. For example, the first
model trained with 1-bit quantized images was tested with
the data quantized in 1-bit with and without dithering, 2-bit
with and without dithering, and so on, till 8-bit. The results
of testing the models with clean images are summarized in
Table I. Intuitively, when train and test data are in the same
bit depth, the accuracy is maximized as shown in each row of
Table I highlighted with bold type font. The accuracy of more
than 90% is maintained on 5, 6 and 7-bit models. However,
the accuracy gradually drops towards 1-bit trained model. The
results confirm that dithering helps improve accuracy from the
experiments.

To evaluate adversarial robustness, we deployed PGD attack
on the quantized test images that are quantized with and
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Fig. 4. Accuracy vs epsilon (1-bit dithered model).

without dithering. Each model was tested with adversarial
examples in different bit depths. Table II captures the results of
the adversarial test for all 15 models. The results suggest that
2-bit dithered model provides the best accuracy (i.e., 87.14%)
when testing against 2-bit dithered images. On the other hand,
1-bit dithered model has the accuracy of 85.28% and 2-bit
model without dithering has the accuracy of 84.49%. From the
results, the test images that are quantized in higher bit depth
such as 3, 4, 5, 6 and 7 bit lead to poor adversarial robustness.
Therefore, we can conclude that linear quantization does not
work when the test images are in high bit depth.

Moreover, we also investigated how the proposed method
reacts to adversarial attacks with different perturbation amount
for top 6 models and 8-bit model. The noise level, ε values
of [0, 2, 4, 8, 16, 24, 32] were used to perform the adversarial
tests. When the noise level is up to 16, 2-bit dithered model
still keeps the accuracy of 87.14%. However, the accuracy
abruptly drops when the noise level is higher than 16. The
model trained with 2-bit images has the accuracy of 84.49%
till the noise level of 16 and drops the accuray for higher noise
levels. One bit dithered model is resilient over all tested noise
levels with the accuracy of 85.28%. Similarly, one bit model
is also resistant against adversarial examples with the accuracy
of 74.87%. It is noteworthy that 3-bit dithered model results
higher accuracy (i.e., ≈ 88.90%) when the noise amount is
less or equal to 4. When there is no noise, in fact, the 8-bit
model produces the highest accuracy. The graph of accuracy
versus epsilon is plotted in Fig. 4. All in all, our benchmark
noise level is 8 and 2-bit dithered gives the best accuracy on
the noise level of 8.

However, when the PGD attack is carried out in 8-bit images
before dithering, our method fails to defend the attack. As an
example, we also tested the proposed method on 1-bit dithered
model with 8-bit noise added before 1-bit dithering. The result
is 4.74%. We shall improve and defend this scenario in the
future work.
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TABLE I
QUANTIZATION TEST

Tr
ai

n
(d

=
di

th
er

ed
)

Test (d = dithered)

1-bit 1-bit (d) 2-bit 2-bit (d) 3-bit 3-bit (d) 4-bit 4-bit (d) 5-bit 5-bit (d) 6-bit 6-bit (d) 7-bit 7-bit (d) 8-bit

1-bit 0.749 0.112 0.724 0.390 0.651 0.615 0.616 0.605 0.603 0.598 0.595 0.593 0.591 0.591 0.589
1-bit (d) 0.481 0.853 0.769 0.828 0.811 0.813 0.809 0.806 0.805 0.803 0.802 0.800 0.800 0.800 0.799

2-bit 0.516 0.121 0.845 0.528 0.841 0.809 0.817 0.817 0.807 0.806 0.801 0.800 0.798 0.797 0.797
2-bit (d) 0.454 0.410 0.781 0.871 0.846 0.859 0.845 0.845 0.841 0.843 0.840 0.841 0.839 0.839 0.839

3-bit 0.439 0.108 0.782 0.336 0.885 0.829 0.888 0.887 0.883 0.884 0.883 0.883 0.882 0.882 0.881
3-bit (d) 0.390 0.140 0.753 0.730 0.874 0.889 0.882 0.886 0.880 0.883 0.877 0.879 0.879 0.878 0.879

4-bit 0.359 0.172 0.692 0.282 0.862 0.720 0.898 0.886 0.897 0.897 0.897 0.898 0.898 0.898 0.898
4-bit (d) 0.296 0.108 0.687 0.320 0.875 0.837 0.896 0.898 0.898 0.899 0.898 0.899 0.897 0.897 0.897

5-bit 0.241 0.127 0.641 0.235 0.842 0.658 0.897 0.872 0.902 0.903 0.904 0.905 0.905 0.905 0.904
5-bit (d) 0.291 0.154 0.665 0.256 0.851 0.713 0.899 0.888 0.904 0.903 0.903 0.902 0.903 0.903 0.902

6-bit 0.310 0.107 0.620 0.248 0.821 0.603 0.888 0.836 0.903 0.895 0.907 0.906 0.907 0.907 0.908
6-bit (d) 0.294 0.149 0.667 0.246 0.846 0.687 0.896 0.877 0.903 0.903 0.904 0.904 0.905 0.905 0.905

7-bit 0.267 0.108 0.616 0.218 0.816 0.587 0.884 0.821 0.900 0.894 0.905 0.903 0.907 0.907 0.907
7-bit (d) 0.288 0.130 0.636 0.221 0.821 0.605 0.884 0.837 0.898 0.892 0.903 0.901 0.902 0.902 0.903

8-bit 0.278 0.117 0.619 0.265 0.815 0.567 0.880 0.816 0.901 0.890 0.906 0.905 0.908 0.907 0.907

TABLE II
ADVERSARIAL QUANTIZATION TEST (ε = 8/255)

Tr
ai

n
(d

=
di

th
er

ed
)

Adversarial Test (d = dithered)

1-bit 1-bit (d) 2-bit 2-bit (d) 3-bit 3-bit (d) 4-bit 4-bit (d) 5-bit 5-bit (d) 6-bit 6-bit (d) 7-bit 7-bit (d) 8-bit

1-bit 0.749 0.749 0.724 0.749 0.160 0.749 0.004 0.749 0.002 0.541 0.002 0.552 0.002 0.556 0.002
1-bit (d) 0.481 0.853 0.769 0.828 0.306 0.320 0.017 0.011 0.004 0.003 0.004 0.003 0.004 0.003 0.003

2-bit 0.516 0.516 0.845 0.845 0.271 0.271 0.005 0.005 0.001 0.001 0.001 0.001 0.001 0.001 0.001
2-bit (d) 0.454 0.410 0.781 0.871 0.268 0.300 0.007 0.005 0.001 0.001 0.002 0.001 0.001 0.001 0.001

3-bit 0.439 0.439 0.782 0.782 0.206 0.206 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3-bit (d) 0.390 0.140 0.753 0.730 0.239 0.274 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4-bit 0.359 0.359 0.692 0.692 0.166 0.166 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4-bit (d) 0.296 0.108 0.687 0.320 0.190 0.180 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

5-bit 0.241 0.241 0.641 0.641 0.162 0.162 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5-bit (d) 0.291 0.154 0.665 0.256 0.150 0.110 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6-bit 0.310 0.310 0.620 0.620 0.151 0.151 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6-bit (d) 0.294 0.149 0.667 0.246 0.147 0.102 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7-bit 0.267 0.267 0.616 0.616 0.130 0.130 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7-bit (d) 0.288 0.130 0.636 0.221 0.149 0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8-bit 0.278 0.117 0.619 0.240 0.125 0.262 0.001 0.269 0.000 0.205 0.000 0.209 0.000 0.207 0.000

V. DISCUSSION

As reported in the work [11], quantization may help improve
robustness against FGSM. However, quantization in training
alone cannot resist PGD attacks when the test images are 8-
bit. In addition, quantization to lower bit depth reduces the
accuracy. To enhance the accuracy in low bit depth images,
we introduce dithering in the proposed method. An example
test image in different bit depths is displayed in Fig. 6 (with
dithering) and Fig. 5 (without dithering). The visual quality
degrades when the bit depth is lower. However, dithering
creates the illusion of color depth resulting better accuracy
in the proposed method.

Why the proposed method works is that the adversarial

noise generated on dithered images are removed by linear
quantization. This second time of quantization process gen-
erates a strong filtering effect and the adversarial noise is
completely removed. An example of dithered, perturbed and
linearly quantized image is shown in Fig. 7. From the figure,
the quantized image (c) is restored to the dithered image
(a) after linear quantization. Therefore, the proposed method
yields the exact same accuracy whether or not under attacks.
However, the proposed method only works on low bit depth
quantization (such as 1 or 2-bit).

Although the proposed method cannot resist the 8-bit PGD
attack, it can be used for detecting adversarial examples if the
reference test dataset is known. The proposed method provides
identical accuracy for both clean and adversarial examples. By
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Fig. 5. Example of quantization without dithering.

Fig. 6. Example of quantization with dithering.

comparing the accuracy of reference test dataset with the test
dataset, we can detect adversarial examples.

VI. CONCLUSIONS

In this paper, we propose a method to achieve the same
accuracy for both clean and adversarial examples. Specifically,
the dithered images are used during training and the test
dithered images are quantized again during testing. We con-
ducted the experiments by training 15 models with different bit
depths with and without dithering and evaluated each model.
In the best case scenario (i.e., 2-bit dithered model), the results
suggest that the proposed method achieves 87.14% accuracy
on both normal and adversarial tests. In addition, the proposed
method is not robust against 8-bit adversarial noise. But,
the proposed method can be used to detect 8-bit adversarial
examples if the clean dataset is available for references. As for
future work, we shall improve accuracy and robustness to get
near plain images accuracy and provable robustness against
adversarial examples.
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G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning and
knowledge discovery in databases. Springer, 2013, pp. 387–402.

(a) Dithered (b) Perturbed (c) Quantized

Fig. 7. Example of a test image being dithered, perturbed and quantized.

[4] R. Jia and P. Liang, “Adversarial examples for evaluating reading
comprehension systems,” arXiv preprint arXiv:1707.07328, 2017.

[5] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[6] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security. ACM, 2017, pp. 506–519.

[7] M.-I. Nicolae, M. Sinn, M. N. Tran, A. Rawat, M. Wistuba, V. Zant-
edeschi, I. M. Molloy, and B. Edwards, “Adversarial robustness toolbox
v0. 2.2,” arXiv preprint arXiv:1807.01069, 2018.

[8] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[9] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[10] M. AprilPyone, W. Sirichotedumrong, and H. Kiya, “Adversarial Test
on Learnable Image Encryption,” arXiv e-prints, p. arXiv:1907.13342,
Jul 2019.

[11] S. Miyazato, T. Yamasaki, and K. Aizawa, “Improving the robustness
of neural networks to adversarial examples by reducing color depth of
training image data,” The University of Tokyo, Tech. Rep., 2019.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[13] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” arXiv preprint arXiv:1611.01236, 2016.

[14] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

[15] MadryLab, “A challenge to explore adversarial robustness of neural
networks on cifar10,” https://github.com/MadryLab/cifar10 challenge.

[16] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016,
pp. 582–597.

[17] N. Carlini and D. Wagner, “Defensive distillation is not robust to
adversarial examples,” arXiv preprint arXiv:1607.04311, 2016.

[18] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[19] R. W. Floyd and L. Steinberg, “An Adaptive Algorithm for Spatial
Greyscale,” Proceedings of the Society for Information Display, vol. 17,
no. 2, pp. 75–77, 1976.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1749




