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Abstract—Connectionist temporal classification (CTC) based
on recurrent (RNNs) or convolutional neural networks (CNNs) is
a method for end-to-end acoustic modeling. Inspired by the recent
success of the self-attention network (SAN) in machine translation
and other domains such as images, we apply the SAN to CTC
acoustic modeling in this paper. SAN has powerful capabilities
for capturing global dependencies, but it cannot model the
sequential information and local interactions of utterances. The
bidirectional temporal convolution with self-attention network
(BTCSAN) is proposed in order to capture both the global and
local dependencies of utterances. Furthermore, the down- and
upsampling strategies are adopted in the proposed BTCSAN in
order to achieve computational efficiency and high recognition
accuracy. Experiments are carried out using the King-ASR-117
Japanese corpus. The proposed BTCSAN can obtain a 15.87%
relative improvement in the CER over the BLSTM-based CTC
baseline.

Index Terms—connectionist temporal classification, bidirec-
tional temporal convolution, self-attention

I. INTRODUCTION

There is growing interest in developing end-to-end models
for large vocabulary continuous speech recognition (LVCSR).
Compared with the traditional hidden Markov model (HMM)/
neural network systems [1, 2, 3, 4, 5], the end-to-end (E2E)
approach avoids the need for linguistic resources such as a
pronunciation dictionary or phonetic context-dependency trees,
and this greatly simplifies the training and decoding pro-
cess. There are three major types of end-to-end architectures
for LVCSR: RNN-Transducers [6], attention-based encoder-
decoder methods [7, 8, 9, 10, 11] and connectionist temporal
classification (CTC)-based frameworks [12, 13, 14, 15, 16].
Generally, CTC models can achieve better performance than
other E2E frameworks, and thus we adopt the CTC framework
in this paper.

The CTC loss function with bidirectional long short-term
memory (BLSTM) networks can achieve comparable or better
results than the HMM systems on most speech recognition
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tasks. However, the training speed can be very slow and the
training process is tricky for BLSTM modeling. To solve
these issues, some researchers explored applying convolutional
neural networks (CNNs) to CTC [17, 18]. Krishna et al. [19]
adopted all-convolutional architectures that were trained using
the CTC loss function. Although the training speed can be
greatly improved, CNNs may perform poorly due to not having
a sufficiently large receptive field. To broaden the receptive
fields of CNNs and enhance their sequence modeling ability,
researchers proposed a new kind of convolution architecture,
temporal convolution networks (TCN), consisting of causal
convolutions, dilated convolutions and residual connections
[20]. TCN models outperform generic recurrent architectures
in synthetic stress tests, polyphonic music modeling, character
and word-level language modeling.

Recently, self-attention has obtained impressive perfor-
mance improvements in neural machine translation [21]. It
is also applied to speech recognition coupled with encoder-
decoder architectures, which can obtain comparable recog-
nition accuracy to mainstream systems [22, 23, 24]. Self-
attention can extract global information, but it lacks the
ability to model the local contextual information of sequence
signals such as speech. Ref. [25] proposed QANet in order to
combine self-attention and convolution, in which self-attention
models the global interactions and convolution models the
local interactions. QANet has showed its superiority in the
fields of machine reading and question answering.

Inspired by the work mentioned above, we propose the
bidirectional temporal convolution with self-attention network
(BTCSAN) and apply it to the CTC framework. Compared
with QANet encoders, we replace the CNN modules with
bidirectional temporal convolution networks (BTCNs) to cap-
ture local contextual information of speech. Compared with
the TCN, the BTCN can capture both the future and the
past contextual information in speech. In addition, to prevent
the GPU memory from overflowing and to maintain the
effectiveness of CTC training, we design down- and upsample
modules for our acoustic model.

In this paper, we apply BTCSAN to Japanese speech recog-
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Fig. 1. (a) The overview of the architecture for CTC training, which consists of a downsample module, an upsample module, a position encoding layer, an
output layer and several BTCSAN modules. (b) For one BTCSAN module in our proposed model, we use a multihead self-attention layer, a feed-forward
layer and multiple bidirectional temporal convolution network layers. (c) For a BTCN layer, 1-D CNN structures are used with causal convolutions, anticausal
convolutions and dilated convolutions. (d) The MTL framework for Japanese speech recognition is shown here.

nition. Japanese has over 2000 graphemes, including Kanji,
Hiragana and Katakana, which are a natural fit for selection as
the modeling units in CTC systems. Considering that a single
Kanji may have different pronunciations (phonemes), we inte-
grate the phoneme information into the CTC framework using
a multitask learning (MTL) strategy in which the primary task
adopts the graphemes as outputs, and the auxiliary task adopts
phonemes as outputs. The experimental results demonstrate
that the MTL framework is effective.

The rest of this paper is organized as follows. We introduce
our proposed architecture for CTC training, especially for
BTCSAN, in Section II. Section III gives a brief description
of the multitask training framework. Section IV shows our ex-
perimental setup and other details, including the experimental
results. Finally, the conclusion is presented in Section V.

II. THE MODULE

The overall architecture of the proposed framework is
depicted in Fig. 1(a), which mainly contains five components:
a downsample module, an upsample module, a position encod-
ing layer, an output layer and a stack of Ne identical BTCSAN
modules. We will describe the details of these components in
the rest of this section.

A. BTCSAN
The stacked BTCSAN modules are the core components

of the proposed CTC training architecture. Each BTCSAN
module consists of a multihead self-attention layer, a position-
wise feed-forward layer, and Nc BTCN layers, as depicted in
Fig. 1(b). We employ a residual connection around each of
the two sublayers, which is followed by layer normalization.

1) Multihead Self-Attention: Our self-attention model
closely follows the SAN model that is presented in [21]. To
obtain information from the different representation subspaces,
we adopt multihead attention as in [21, 22]. Multihead at-
tention first linearly projects the queries, keys and values h
times with different, learned projections. Then, these outputs
are concatenated and projected again in order to obtain the
final results.

Multihead(Q,K,V) = Concat(head1,...,headh)W
o (1)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ) (2)

where Q, K, V stand for queries, keys and values, the
parameters WQ

i ∈ Rdmodel x dk , WK
i ∈ Rdmodel x dk , WV

i ∈
Rdmodel x dv and WO

i ∈ Rdmodel x dmodel are projection matri-
ces, and dk = dv = dmodel/h .

2) Position-wise Feed-Forward Network: The position-wise
feed-forward network (FFN) consists of two linear transfor-
mations with an ReLU activation in between, which will
introduce additional depth and nonlinearities.

FFN(x) = max(0,xW1 + b1)W2 + b2 (3)

where W1 ∈ Rdmodel x dff and W2 ∈ Rdff x dmodel , b1 and
b2 are bias. And in this paper, we set dff = 2dmodel.

3) Bidirectional Temporal Convolution Network: The pro-
posed BTCN is depicted in Fig. 1(c). The TCN has a wider
receptive field than the conventional CNN, and this is fit for
sequencing signals such as speech. Since the SAN lacks infor-
mation about the relative or absolute positions of frames in the
speech sequence, we use the BTCN with causal and anticausal
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convolutions in order to capture the position information. A
causal convolution produces an output at time t, which is
convolved only with the elements from time t and earlier in
the previous layer. Conversely, an anticausal convolution uses
elements from time t and after that in the previous layer.

In our model, the BTCN only adopts the 1D-CNN so that
the network can produce an output that is the same length as
the input. To make the network more memory efficient, we
use depthwise separable convolutions.

To obtain more historic or future information from the
sequence, we employ dilated convolutions in the network. For
a 1-D sequence x and a filter f : {0, ..., k − 1}, the dilated
convolution operation at time-step t of the sequence is defined
as:

Dilated causal(x, d, k) =
k−1∑
j=0

f(j) · xt−d·j (4)

Dilated anticausal(x, d, k) =
k−1∑
j=0

f(j) · xt+d·j (5)

where d is the dilation factor and k is the filter size.
For the ith(1 ≤ i ≤ Nc) BTCN in one BTCSAN module,

the output is computed as follows:

x fw = Dilated causal(layernorm(x), di, k) (6)

x bw = Dilated anticausal(layernorm(x), di, k) (7)

O = concat(x fw,x bw) + x (8)

where di is the dilation factor, di = 2i−1, x ∈ Rdmodel x T ,
T is length of the acoustic sequence and x fw,x bw ∈
Rdmodel/2 x T . After each dilated CNN layer, we adopt the
LeakyReLU as the nonlinear function.

B. Downsample and Upsample
During the training process, the GPU memory may overflow

because self-attention requires large memory in order to store
the attention scores of every two frames of the acoustic se-
quence, and the number grows quadratically with the sequence
length. Taking this issue into account, we design a downsample
module in order to reduce the length of speech and make our
model more memory-efficient.

We stack two blocks in the downsample module. For each
block, there are two 2-D CNN layers and a max-pooling layer
between CNNs. The max-pooling operation is executed among
the time dimensions. A reshaping operation is applied after the
second max-pooling layer, which is followed by a projected
operation on the flattened feature map outputs in order to
obtain the vectors of dimension dmodel.

After two max-pooling operations in the downsample mod-
ule, the size of the speech sequences becomes a quarter
of the original size. On the other hand, the deconvolution
operation before the output layer must keep the same size
as the original speech sequences in order to achieve high
recognition accuracy. We use a 1x4 deconvolution in order
to fulfill this upsampling operation.

    

On-yomi:          (sui)

    Kun-yomi:        (mizu)

Fig. 2. Different pronunciations of the kanji character ‘水’

C. Position encoding

In order to further enhance the sequence modeling ability
of our acoustic model, we add the position encoding to the
input encoding as in [21, 22].

PE(pos,2i) = sin(pos/100002i/dmodel) (9)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (10)

where pos is the position and i is the dimension.

III. MULTITASK LEARNING ARCHITECTURE

We conducted experiments on the Japanese ASR task.
Japanese has a complex writing system, including Kanji and
two syllabaries: hiragana and katakana. These graphemes can
be used as model units in CTC-based systems. Hiragana and
katakana are simplified from kanji and have a consistent
one-to-one match pronunciation in Japanese, but most kanji
characters have two or more pronunciations. A simple example
is illustrated in Fig. 2, where the kanji character ’水’ can have
two pronunciations as ‘すい’ and ‘みず’.

Considering the polyphone problem, we combine the
phoneme information into the grapheme-based CTC system
in order to train the acoustic model. As depicted in Fig.
1(d), the architecture takes the grapheme-based CTC system
as the primary task and the phoneme-based CTC system as
an auxiliary task by sharing the hidden layers of the same
network.

In the training procedure, the objective is presented as (11),
and it includes an adjustable parameter α.

Oall = (1− α)Ographeme + αOphoneme (11)

where 0 ≤ α ≤ 1 . Ographeme and Ophoneme present the
objectives of the two tasks. α determines the influence of the
secondary task on the model. We only use grapheme-branch
outputs for decoding.

IV. EXPERIMENTS

A. Database

The experiments are conducted using the King-ASR-117
corpus. This corpus is a Japanese speech database that was
collected by the Speechocean Corporation1 . All the speech
files are sampled at 16K Hz with 16 bits. The transcripts con-
tain 122,847 (approx.) utterances in total with approximately
145 h of speech. In the experiments, we randomly selected
123 h, 6 h and 4 h of speech data as the training, dev and test
sets, respectively.

1www.speechocean.com

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1264



B. Experiment setup

The Pytorch and Eesen [26] toolkits are used in our model
training process. The acoustic feature is 108-dimensional filter-
bank of features (36 filter-bank features, delta coefficients, and
delta-delta coefficients) with mean and variance normalization.
According to the statistical information of the transcripts, there
are 2794 different graphemes (Kanji, hiragana and katakana)
in the training set. Along with the added blank, 2795 modeling
units are used in the grapheme-based CTC system. The trigram
language model is used in the decoding procedure.

C. Baselines

We build three types of CTC systems as our baselines. All
the networks are optimized by Adam [27], and the initial learn-
ing rate is set to 0.0004, which is halved if the performance
when using the cross-validated data (dev set) degrades.

• The first system is a classical BLSTM-CTC system,
which contains 3 layers with 1024 nodes in each layer.

• The second system is a CNN-CTC system, which was
proposed in [19]. In this system, traditional 1-D CNN
structures are adopted. The input acoustic sequences are
convolved and followed by max-pooling across time in
the first layer. After the subsequent ResBlocks (composed
of a pair of convolution layers and a residual connec-
tion), the last two layers before the output nodes are
fully connected layers with 512 hidden units. The batch
normalization and a nonlinear ReLU are also added after
every convolution layer, which has output channels. The
kernel size of the 1-D CNN is set to 5, which is the same
as the setting used in [19].

• The last is a SAN-CTC system, which explores the
strength of self-attention to acoustic modeling. In the
experiments, SAN-CTC adopts the same down- and up-
sample modules as our proposed framework, and the
details are as shown in Table I. Meanwhile, we set both
the attention dropout and residual dropout to 0.1 in the
SAN system [22]. For the LeakyRelu function in our
model, the negative slope is set to 0.1.

The character error rate (CER) is used as an evaluation
criterion for our systems. The performance of the three
baseline systems are listed in Table II. Though the CNN
system has much fewer parameters than the BLSTM system,
the performance is not satisfactory. The SAN system can
outperform BLSTM and be more memory-efficient, which
proves the SAN’s ability of capturing global information .
When we set head = 8 and Ne = 6, the best performance
with CER = 10.98% can be obtained, and this result is used
as our baseline performance.

D. BTCSAN-CTC

For the proposed BTCSAN-CTC system, the settings are
the same as the baseline SAN-CTC system in Table I, and
we also set head = 8 and Ne = 6 for the BTCSAN
system in order to compare the CERs. The performances of
the BTCSAN-CTC system are listed in Table III. It can be
observed that the best performance with a CER 9.88% is

TABLE I
THE CONFIGURATION OF THE DOWN- AND UPSAMPLE MODULES IN
SAN-CTC SYSTEMS. PARAM(A,B,C,D) REPRESENTS THE INPUT

CHANNELS, OUTPUT CHANNELS, AND THE KERNEL SIZE AMONG THE
DIMENSION AND TIME AXES, RESPECTIVELY, AND STRIDE(E,F) DENOTES

THE STRIDE AMONG THE DIMENSION AND TIME AXES, RESPECTIVELY.

Module Layer Param Stride

Down-
sample

Conv (1,64,9,3) (1,1)
Max-Pooling (-,-,1,2) (1,2)

Projection (64,64,1,1) (1,1)
Conv (64,64,3,3) (1,1)

Max-Pooling (-,-,1,2) (1,2)
Reshape - -

Projection (108*64,dmodel,1,1) (1,1)

Upsample Deconv (1,1,1,4) (1,4)

TABLE II
COMPARISONS OF THE BASELINES (BLSTM, CNN AND SAN) WITH

CER% USING THE KING-ASR-117 CORPUS.

Module Ne head dmodel #Weights CER%

BLSTM 3 - 1024 65.3M 11.28

CNN
14 - 256 10.3M 12.85
17 - 256 12.3M 12.98
28 - 256 19.5M 12.90

SAN

5 4 256 5.16M 13.31
5 8 512 15.5M 11.20
6 8 512 17.6M 10.98
7 8 512 19.7M 11.49

obtained when Nc = 2 and k = 3. Compared with the SAN
baseline, a 1.1% absolute CER reduction can be obtained.
However, we continue increase Nc, and the performance
degrades because of the network depth. In order to further
investigate the influence of the BTCN layer, we establish
two systems that only use causal convolutions or anticausal
convolutions instead of both of them, which are denoted as
TCSAN and r-TCSAN, respectively. The last two rows of
Table III list the results of the TCSAN and r-TCSAN, and
their performances are much worse than the BTCSAN system.
The reason may be that BTCSAN can learn the contextual
information more effectively through the causal convolutions
and anticausal convolutions.

E. Multitask learning framework

To further improve the performance, the MTL training
framework is adopted, and the mono-phones are used as the
modeling units of the auxiliary task. According to the lexicon
of Speech-ocean Corporation, there are 864 phoneme variants
because of word-position dependency and 1 blank unit used
in the experiments. In the MTL framework, the two branches
share the first four encoder layers, and the other settings are
same as the BTCSAN-CTC system in Section 4.4. And the
parameter α in the MTL is adjusted using the dev set. As
presented in Table IV, when α is 0.4, the system obtains the
best performance with a CER of 9.49% for test set. Compared
with the best results in Table III, a 0.39% reduction can be
obtained, which means that the phoneme information is helpful
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TABLE III
THE CER% OF BTCSANS WITH VARIATIONS IN THE ARCHITECTURE.

Module NC K #Weights CER%

SAN - - 17.6M 10.98

BTCSAN

1 3 19.2M 10.44
2 3 20.8M 9.88
3 3 22.5M 10.10
4 3 24.1M 10.44
2 5 20.9M 9.97
2 7 20.9M 10.20

TCSAN 2 3 20.8M 10.84
r-TCSAN 2 3 20.8M 10.62

TABLE IV
THE CER% OF MTL FRAMEWORKS WITH DIFFERENT α

Module α dev set test set

MTL-BTCSAN

0.1 3.95 9.54
0.2 3.96 9.64
0.3 3.92 9.58
0.4 3.91 9.49
0.5 4.06 9.66

for CTC acoustic modeling.

V. CONCLUSIONS

In this paper, we propose the bidirectional temporal convo-
lution with self-attention network and explore its capabilities
for CTC-based acoustic modeling. BTCSAN takes full advan-
tage of the long-range dependencies and local information
on acoustic sequences. In addition, causal and anticausal
convolution operations enhance the ability of the network for
sequence modeling. Furthermore, we apply it to the multitask
learning framework using a Japanese corpus, and the proposed
network gives a 15.87% relative reduction in the CER over the
BLSTM baseline system.
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