
Query-by-Example Spoken Term Detection using
Attentive Pooling Networks

Kun Zhang∗, Zhiyong Wu∗, Jia Jia†, Helen Meng‡, Binheng Song∗
∗ Tsinghua-CUHK Joint Research Center for Media Sciences, Technologies and Systems,

Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
E-mail: zk17@mails.tsinghua.edu.cn, zywu@sz.tsinghua.edu.cn, songbinheng@sz.tsinghua.edu.cn

† Beijing National Research Centre for Information Science and Technology (BNRist),
Department of Computer Science and Technology, Tsinghua University, Beijing, China

E-mail: jjia@tsinghua.edu.cn
‡ Department of Systems Engineering and Engineering Management,

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
E-mail: hmmeng@se.cuhk.edu.hk

Abstract—Query-by-example spoken term detection (QbE-
STD) is attractive because its a key technology for retrieving
and browsing spoken content without transcribing them into text.
Several end-to-end models based on encoder architecture have
been proposed for QbE-STD, in which the input pair, spoken
query and audio segment, are first projected into fixed-length
vector representations by feature extraction module and then
similarity measure module is used to output detection score
based on the representations. Attention mechanism has been
applied into the feature extractor; however, traditional approach
calculates attention vector for audio segment only, which makes
it a one-way attention mechanism. In this paper, we present
a novel feature extraction module based on two-way attention
mechanism, called attentive pooling networks, for end-to-end
QbE-STD. The main idea is to learn a similarity measure over
the projected input pair and extract information in a way that
two input items can directly influence the computation of each
other’s representation. Evaluations on the LibriSpeech corpus
and cross-linguistic audio archive confirm the effectiveness of
our proposed approach compared to the traditional ones.

I. INTRODUCTION

Spoken term detection (STD) is defined as the task of re-
trieving audio segment which contains the user-defined query
from audio archive. Early researches on STD mainly focus
on text query task, i.e. keyword search [1], [2], which relies
on automatic speech recognition (ASR) technology. Instead
of using text as query input, query-by-example spoken term
detection (QbE-STD) utilizes an acoustic example of query
(spoken query) to detect audio segment. The input of QbE-
STD task is the audio pair (spoken query and audio segment)
and the output is a detection score which represents the
confidence that audio segment contains the query. QbE-STD is
a key technology for retrieving and browsing spoken content
without transcribing them into text, which makes it attractive
in the age of multimedia information explosion.

The key to solving the QbE-STD task is how to extract se-
mantic content information while removing irrelevant informa-
tion like speaker characteristics, environment noise, emotion
information, etc. QbE-STD system consists of two modules:
feature extraction and similarity measure. An intuitive way of

QbE-STD is to directly compare the acoustic features between
spoken query and audio segment, in which dynamic time
warping (DTW) techniques are widely used [3], [4], [5]. In
basic DTW approach, acoustic features extracted from input
pair are used to construct a frame-level similarity matrix.
Then the DTW algorithm is used to find the optimal warping
path with the smallest distortion score through the similarity
matrix. And the distortion score of the optimal warping path is
returned as detection result. Improvements on DTW approach
include using high-level features (phonetic posteriorgram [6],
[7], bottleneck feature [8], etc.) and imposing limitations
on search algorithm (segmental DTW [7], [9]). The DTW-
based approach yields state-of-the-art performance in non-
deep-learning approaches. However, the performance of DTW-
based approach relies on high-level feature like posteriorgram
feature, which is not available for low-resource audio archive.
Furthermore, the dynamic programming algorithm for similar-
ity measure is time-consuming.

Several End-to-end architectures have been proposed for
QbE-STD task, which extract fixed-length vector represen-
tations from input audio pair (spoken query and audio seg-
ment), followed by a large-margin or classification training.
In [10], recurrent neural networks (RNNs) with long short-
term memory (LSTM) is used as encoder and the last several
hidden states of RNNs are stacked to create the fixed-length
vector representation. A variant using recurrent auto-encoder
(RAE) is proposed in [11], in which RAE encoder is trained
by margin-based loss to extract vector representation related
to semantic content and then cosine distance is used for
similarity measure. The parameters of RNNs used to encode
query and segment are shared (i.e. the same) so that input pair
is projected into the same vector space. Embedding variable-
length acoustic feature sequence into fixed-length vector rep-
resentation makes it easy to measure similarity. However,
memory cell of RNNs maintains most information of nearby
frames while losing much information of frames far away
from the current time step, which indicates that representation
learned by RNNs encoder depends mainly on frames at last
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several timesteps. We call it the position bias of RNNs encoder.
Attention mechanism has been proposed to extract represen-

tation by pooling over the whole hidden state sequence rather
than retaining only several hidden states. For example, in [12],
The input pair are first projected into hidden state sequences
respectively by shared RNNs encoder. For spoken query, the
hidden state at last timestep is used as the vector representation
like [10]. As for audio segment, soft alignment scores are
calculated between segment hidden state sequence and the last
hidden state of query, which is then normalized to generate the
attention vector. The segment hidden states are then weighted
with attention vector and summed to yield the representation of
audio segment. Nevertheless, this kind of attention mechanism
calculates attention vector for audio segment only, which
makes it a one-way attention mechanism and the asymmetric
feature extraction process makes representations of query and
segment less comparable.

In this paper, we present a two-way attention mechanism
for feature extraction of end-to-end QbE-STD system, called
attentive pooling networks [13]. The main idea is to learn a
similarity measure over the projected input pair and extract in-
formation in a way that two input items can directly influence
the computation of each other’s representation. The two-way
attention feature extractor has following advantages.

• Attention mechanism is applied to both spoken query and
audio segment, which avoids position bias for both of
them.

• The two-way attention feature extractor is almost sym-
metric for spoken query and audio segment, making
representations more comparable.

• Learning a similarity measure over the projected input
pair makes it possible to compare two inputs in a more
plausible way, even though two inputs are not in the same
semantic domain (e.g. spoken query and audio segment
are from different languages) [13].

The rest of the paper is organized as follows. Section II
describes in detail Shared RNNs, One-Way Attention and Two-
Way Attention feature extractors. Section III introduces Two-
Way Attention-based QbE-STD system. Section IV provides
experiments and analyses. Finally, section V concludes the
paper.

II. TWO-WAY ATTENTION BASED REPRESENTATION
LEARNING

For notation, we denote spoken query by acoustic feature
sequence Q = {q1, q2, ..., qM} and audio segment by S =
{s1, s2, ..., sN}. Here M and N denote the number of frames
in spoken query and audio segment respectively.

A. Shared RNNs

RNNs with LSTM unit can store information for a long
period of time by the means of three types of gates that control
the flow of information into and out of memory cell. Given
feature sequence of spoken query Q = {q1, q2, ..., qM}, RNNs
with LSTM unit projects Q = {q1, q2, ..., qM} into hidden
state sequence HQ = {hQ

1
, h

Q
2
, ..., h

Q
M}. The hidden state at

last timestep h
Q
M contains the information of the whole audio

sequence and is used as vector representation of spoken query.
The audio segment S = {s1, s2, ..., sN} is embedded by the
same RNNs encoder into hS

N likewise. The RNNs encoder
parameters used for spoken query and audio segment are
shared so that the input pair is projected into the same vector
space.

The drawback of Shared RNNs encoder is that RNNs
maintain most information of nearby frames while losing
much information of frames far away, which makes vector
representation mainly depends on the last several frames of
audio sequence.

B. One-Way (OW) Attention
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Fig. 1. One-way attention-based encoder.

To avoid the position bias of Shared RNNs encoder, atten-
tion mechanism has been proposed to pool over the whole
hidden state sequence to extract information relevant to the
task. The framework of one-way attention mechanism used in
[12] is shown in Figure 1.

In [12], spoken query Q and audio segment S are first
converted into hidden state sequences HQ = {hQ

1
, h

Q
2
, ..., h

Q
M}

and HS = {hS
1
, hS

2
, ..., hS

N} by shared RNNs. For spoken
query, the hidden state at last timestep h

Q
M is used as the vector

representation VQ. As for audio segment, attention value αt

at each timestep t is the cosine similarity between the query
representation VQ and the hidden state hS

t of each frame.

αt = St ⊙ VQ (1)

where symbol ⊙ denotes cosine similarity between vectors.
Then the attention value is normalized using softmax function
to get attention vector.

α′

t =
exp(αt)∑N

i=1
exp(αi)

(2)

Finally, hidden state hS
t of audio segment at each timestep is

weighted with respective normalized attention value α′

t and
summed to yield the segment representation VS .

VS =
N∑

t=1

α′

th
S
t (3)
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Many more complicated attention mechanisms have been
proposed in other areas; however, most of them don’t apply
to the QbE-STD task due to the time complexity limitation.

The attention mechanism above calculates attention vector
for audio segment only, which makes it a One-Way (OW)
Attention mechanism. The representation extraction of spoken
query still suffers from position bias problem. Furthermore,
the asymmetric feature extraction process makes extracted
representations of query and segment less comparable.

C. Two-Way (TW) Attention
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Fig. 2. Two-way attention-based encoder [13].

Here we present a Two-Way (TW) Attention mechanism,
called attentive pooling networks [13] for representation learn-
ing in QbE-STD. The framework of Two-Way Attention
feature extractor is shown in Figure 2.

First, RNNs with LSTM is adopted to process acoustic
feature sequence of spoken query Q = {q1, q2, ..., qM} into
hidden state sequence HQ = {hQ

1
, h

Q
2
, ..., h

Q
M}. And acoustic

feature sequence of audio segment S = {s1, s2, ..., sN}
is projected by shared RNNs into HS = {hS

1
, hS

2
, ..., hS

N}
likewise. Next, the attention matrix G is computed as follows.

G = tanh(HT
QUHS) (4)

where U is the measure matrix and learned by training and
HT

Q is the transpose of matrix HQ. The attention matrix G

represents soft alignment score between each frame of spoken
query and audio segment. Then we apply column-wise and

row-wise poolings over G to generate the weight vectors gQ ∈
R

M and gS ∈ R
N respectively. For instance, the j-th element

of the weight vectors gQ is computed as follows.

[gQ]j = max
1≤i≤N

[Gj,i] (5)

The j-th element of the vector gQ can be interpreted as an
attention weight for the context around the j-th frame in
the spoken query Q regard to audio segment S, and vice
versa. Then the attention vectors gQ and gS are normalized
with softmax function to generate attention vectors σQ and
σS . Finally, the vector representations of spoken query and
audio segment VQ and VS are computed as the dot product
between the attention vector and RNNs hidden state sequence
respectively.

VQ = HQσ
Q, VS = HSσ

S (6)

With this design, the TW Attention mechanism can jointly
learn the vector representation of input pair. The represen-
tations of query and segment are computed by pooling over
the whole feature sequence with attention vector as weight,
which avoids position bias of Shared RNNs encoder. Besides,
TW Attention feature extractor is almost symmetric for spoken
query and audio segment, which makes representations of
input pair more comparable than that of OW Attention. Finally,
learning a similarity measure U over the projected input
pair makes it possible to compare two inputs in a more
plausible way, even though two inputs are not in the same
semantic domain (e.g. spoken query and audio segment are
from different language) [13].

The computation process of TW Attention mechanism in
[13] is actually not completely symmetric. E.g. if we exchange
the position of spoken query Q and audio segment S, the
measure matrix will become UT , the transpose of U . To make
TW Attention feature extractor a completely symmetric com-
putation for query and segment, i.e. the output representations
don’t change if we exchange the spoken query and audio
segment input, we limit the measure matrix U to a symmetric
matrix, i.e. U = UT .

D. Large-margin Training

We use a margin-based (hinge) loss for training, in which
the intra class distance becomes smaller while the distance
between classes becomes larger. For each input group dur-
ing training, we construct two input pairs composed of
three audio sequences: spoken query Q = {q1, q2, ..., qM},
positive segment S(p) = {s

(p)

1
, s

(p)

2
, ..., s

(p)

N1
} (of the same

word type with spoken query) and negative segment S(n) =

{s
(n)

1
, s

(n)

2
, ..., s

(n)

N2
} (of the different word type with spoken

query). Then two input pairs (Q,S(p)) and (Q,S(n)) are embe-
ded into vector representations (V (p)

Q , V
(p)

S ) and (V (n)

Q , V
(n)

S )
by feature extraction module. For Shared RNNs and OW
Attention encoders, V (p)

Q and V
(n)

Q are the same while for TW
Attention encoder they are different, because TW Attention
mechanism extracts representations in a way that query and
segment can influence each other’s representation.
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The hinge objective function is defined as follows.

Lhinge = max{0, M + l(V
(p)

Q , V
(p)

S )− l(V
(n)

Q , V
(n)

S )} (7)

where M is the maximum distance margin between positive
pair and negative pair, in this paper we set margin M = 1.
The similarity distance l between two vector representation
VQ and VS is computed by the cosine distance as follows.

l(VQ, VS) = (1− cos(VQ, VS))/2 (8)

III. TWO-WAY ATTENTION BASED QBE-STD SYSTEM
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Fig. 3. Framework of two-way attention-based QbE-STD system.

The fixed-length vector representation learned by TW At-
tention feature extractor can be applied to QbE-STD as shown
in Figure 3. In off-line process, the audio archives are first
segmented based on word boundaries. As for the speech of
zero-resource language, voice activity detection (VAD) and
skipped-frame sliding-window are available for segmentation.
Then the shared RNNs part of trained encoder is used to
project audio segments in archive into hidden state sequences.
During on-line process, given a spoken query, the system ex-
tracts the representations of spoken query and audio segments
and then rank all the audio segments in the audio archive
according to the cosine distance between representations of
each query and segment pair. Due to simple attention compu-
tation process and using cosine distance between single vector
representations as similarity measure, the time consumption
of the on-line process is very low, opposed to DTW-based
approaches. For baseline systems using Shared RNNs, OW
Attention as feature extractor, the framework is the same with
that shown in Figure 3.

IV. EXPERIMENTS

A. Experimental Setup

We use LibriSpeech [14] corpus to construct our experiment
dataset. 39 dimensional MFCC acoustic features are extracted
using Kaldi toolkit [15] and used as the input of all the
baselines and our proposed approach.

• Training set: We select segments which consist of at
least 6 phonemes and are of duration between 0.5 and 1.0
second from the LibriSpeech corpus. All the segments
are sliced from forced aligned utterances to make sure
each segment contains a complete word meaning exactly.
There are 50,000 segments in the training set, which
belong to 500 different word types. For each segment,
we randomly select a segment of the same word type in
the training set to form a positive pair and a segment of
different word type to form a negative pair. An input
group is formed with the two pairs above for each

segment. So for each training epoch, there are 50,000
input groups (100,000 pairs) in total for training.

• Testing set 1: In LibriSpeech testing set, there are 100
word types, of which 50 word types don’t appear in train-
ing set (Out-Of-Vocabulary, OOVs) and 50 word types are
in the training set (In-Vocabulary, IVs), representing 1%
positive to negative ratio to match expected application
usage. For each word type, we randomly select 20 audio
segments to form the audio archive for retrieving and
one extra audio segment as spoken query, so there are
totally 1000 OOVs audio segments and 1000 IVs audio
segments in audio archive. Spoken query doesn’t appear
in the audio archive.

• Testing set 2: To evaluate the QbE-STD performance in
cross-linguistic scenario, we make up an English-Chinese
mixed audio archive. We select 50 Chinese word types
and each word type has 20 audio segments from our
private Chinese corpus. The Chinese segments are of
duration between 0.5 and 1.0 second. Then we mix these
1000 Chinese audio segments with 1000 OOVs audio
segments from testing set 1 to form the mixed audio
archive. Each word type in the archive has one extra audio
segment as spoken query. For comparison, the Chinese
segmentation is based on word boundaries instead of
VAD.

All the neural networks feature extractors are implemented
on the TensorFlow platform. Mini-batch-trained Adam with
0.00005 learning rate and 128 batch size is used for training.
RNNs in all the models consist of two hidden layers each with
128 LSTM units and all the models are trained for 3 epochs.

Mean Average Precision (MAP), the mean of the average
precision in the range of recall for each query in the testing set,
and P@20 are used as the evaluation metrics for QbE-STD.
The approaches for the experiments are described as follows.

• DTW-based: the mostly used baseline for query-by-
example spoken term detection. DTW baseline uses the
same set of features with other end-to-end models, so
they can be fairly compared.

• Shared RNNs: using shared RNNs as the feature extrac-
tor.

• OW Attention: using shared RNNs with one-way atten-
tion mechanism as the feature extractor.

• TW Attention (Asym): using shared RNNs with two-
way attention mechanism in [13] as the feature extractor.

• TW Attention (Sym): using shared RNNs with two-way
attention mechanism as the feature extractor and limiting
the measure matrix U to a symmetric matrix, i.e. U =
UT .

B. Evaluation of QbE-STD on testing set 1 which consists of

English audio segments

Table I shows the performance of all the models on the
testing set 1. It’s clear from the result that Shared RNNs per-
forms better than OW Attention while DTW-based approach is
worse, even though OW Attention has more parameters than
Shared RNNs. We guess the reason is that the asymmetric

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

1270



TABLE I
PERFORMANCE OF QBE-STD ON TESTING SET 1 WHICH CONSISTS OF

ENGLISH AUDIO SEGMENTS

Model MAP (IVs) MAP (OOVs) MAP (Total) P@20
DTW-based 0.040 0.042 0.041 0.015

Shared RNNs 0.099 0.114 0.107 0.052
OW Attention 0.065 0.059 0.062 0.026

TW Attention (Asym) 0.170 0.131 0.151 0.068
TW Attention (Sym) 0.134 0.171 0.153 0.064

feature extraction process for query and segment of OW
Attention makes representations less comparable. We can see
from the table that TW Attention (both Asym and Sym)
performs the best among all the approaches and achive 140%
relative MAP improvements with respect to OW Attention
baseline, indicating that learning representations of input pair
jointly contributes to the extraction of semantic content infor-
mation. TW Attention combines the advantages of symmetric
computation of Shared RNNs and attention mechanism of OW
Attention.

C. Relationship between sequential phonetic structure and

vector representation learned by feature extractor

TABLE II
AVERAGE COSINE DISTANCE OF THE LEARNED REPRESENTATIONS

BETWEEN SEGMENTS OF INPUT PAIRS CLUSTERED BY THE PHONEME
SEQUENCE EDIT DISTANCE AND WHETHER THE SUFFIXES ARE THE SAME.

Model D < 12 / D ≥ 12 Same / Different Suffixes
Shared RNNs 0.466 / 0.482 0.152 / 0.516 (+0.364)
OW Attention 0.423 / 0.457 0.402 / 0.443 (+0.041)

TW Attention (Asym) 0.555 / 0.590 0.525 / 0.576 (+0.051)
TW Attention (Sym) 0.568 / 0.596 0.533 / 0.586 (+0.053)

D is the phoneme sequence edit distance between segments of input pair

Table II shows the average cosine distance of the learned
representations between segments of input pairs in testing
set 1, on the condition of different phoneme sequence edit
distance and phoneme suffixes. We select median 12 as the
cosine distance boundary. It can be observed that, for all the
models, cosine distance between representations of segments
grows with the phoneme sequence edit distance increasing,
which indicates that the learned representations can represent
the sequential phonetic structure in some degree. Another
observation is that the cosine distance between the learned
representations of the pairs with same phoneme suffixes is
less than that of pairs with different suffixes. It’s worth noting
that for Shared RNNs, the cosine distance of pairs with
same suffixes is very small, compared to other attention-
based encoders because Shared RNNs use hidden state at
last timestep as the representation of input audio. Due to the
elimination of position bias, attention mechanism (both OW
Attention and TW Attention) can greatly reduce the difference
between same and different suffixes, as compared to Shared
RNNs.

TABLE III
PERFORMANCE OF QBE-STD ON TESTING SET 2 WHICH CONSISTS OF

ENGLISH-CHINESE MIXED AUDIO SEGMENTS

Model MAP (Eng.) MAP (Chi.) MAP (Total) P@20
DTW-based 0.047 0.040 0.043 0.018

Shared RNNs 0.161 0.101 0.131 0.052
OW Attention 0.093 0.049 0.071 0.039

TW Attention (Asym) 0.183 0.109 0.146 0.052
TW Attention (Sym) 0.269 0.117 0.193 0.068

D. Evaluation of QbE-STD on testing set 2 which consists of

English-Chinese mixed audio segmens

Table III shows the performance of all the QbE-STD sys-
tems on testing set 2 consisting of English-Chinese mixed
audio segmens. It can be seen from the result that TW
Attention (both Asym and Sym) performs best among all the
models, indicating that by learning a measure matrix U , TW
Attention feature extractor can extract comparable semantic
content information of speech from different languages, even
though the second language is zero-resource. An interesting
observation is that TW Attention (Sym) outperforms TW
Attention (Asym), which demonstrates that by limiting the
measure matrix U to a symmetric matrix and making the
computation completely symmetric, TW Attention can extract
more comparable representations and perform better.

V. CONCLUSIONS

In this paper, we propose a Two-Way Attention mechanism
for feature extraction in QbE-STD. Evaluation on testing
set consisting of English segments indicates that Two-Way
Attention mechanism performs best among all the models by
combining advantages of symmetric computation of Shared
RNNs and attention mechanism of One-Way Attention. Be-
sides, by learning a measure matrix, Two-Way Attention based
encoder can extract comparable semantic content information
of speech from different languages, even though the second
language is zero-resource. Finally, limiting the measure matrix
U to a symmetric matrix and making the computation com-
pletely symmetric can improve the performance of Two-Way
Attention encoder in cross-linguistic scenario.

Future work includes investigating more complicated en-
coder neural netorks, such as TDNNs, RNNs with biLSTM,
etc.
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