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Abstract— Speech enhancement based on neural networks 
provides performance superior to that of conventional 
algorithms. However, the network may suffer owing to 
redundant parameters, which demands large unnecessary 
computation and power consumption. This work aimed to 
prune the large network by removing extra neurons and 
connections while maintaining speech enhancement 
performance. Iterative network pruning combined with 
network retraining was employed to compress the network 
based on the weight magnitude of neurons and connections. 
This pruning method was evaluated using a deep denoising 
autoencoder neural network, which was trained to enhance 
speech perception under nonstationary noise interference. Word 
correct rate was utilized as the subjective intelligibility feedback 
to evaluate the understanding of noisy speech enhanced by the 
sparse network. Results showed that the iterative pruning 
method combined with retraining could reduce 50% of the 
parameters without significantly affecting the speech 
enhancement performance, which was superior to the two 
baseline conditions of direct network pruning with network 
retraining and iterative network pruning without network 
retraining. Finally, an optimized network pruning method was 
proposed to implement the iterative network pruning and 
retraining in a greedy repetition manner, yielding a maximum 
pruning ratio of 80%. 

I. INTRODUCTION 

Speech enhancement has been widely used in speech 
communication, automatic speech recognition, and speech 
coding. It aims to estimate clean speech from noisy sound 
with an acceptable speech quality and intelligibility. Many 
monaural speech enhancement methods, which use only 
single-channel speech information have been proposed, such 
as Wiener filtering, minimum mean square error (MMSE) 
based estimation, and subspace method [1]. Most speech 
enhancement algorithms are derived based on the prior 
distribution assumptions of the noisy speech and explore the 
statistical difference between the clean speech and noise 
signal. In real-world scenarios, those speech enhancement 
algorithms are usually less effective under nonstationary 
noise conditions. Recently with the development of the deep 
neural network (DNN) in signal processing [2-3], many 
neural network based speech enhancement algorithms have 
been proposed, which employ nonlinear processing units to 
learn higher order statistical information automatically [4-7]. 
For instance, an objective function for DNN-based speech 
enhancement was proposed to match human auditory 
perception. The proposed objective function helped to 

compute the gradients based on a perceptually motivated 
non-linear frequency scale and alleviated the over-
smoothness of the estimated speech [8]. Furthermore, a 
speech enhancement algorithm based on deep denoising 
autoencoder (DDAE) was shown to provide superior 
performance to the traditional MMSE-based estimation [4, 5]. 
The DDAE-based speech enhancement combined with a 
noise classifier could potentially be integrated into an 
embedded signal processor to overcome the degradation of 
speech perception caused by noise [9, 10].  However, the 
superior performance of the neural network is at the cost of 
high computational complexity and power consumption, 
making it difficult to deploy neural network based speech 
enhancement to mobile and embedded devices. Hence, many 
recent studies have focused on designing approaches to 
compress DNN structures. Effective approaches include 
quantization, sparse or low-rank compressions, and network 
pruning [11]. 

Specially, the network pruning method has been studied 
for decades [12-14]. Early pruning approaches included 
optimal brain damage (OBD) and optimal brain surgeon 
(OBS), which reduced the number of network connections 
based on the Hessian of the loss function [12, 13]. It was 
shown that such pruning methods were more effective and 
accurate than the magnitude-based pruning method [15]; 
however, the necessary second-order derivatives required 
additional computational resources. Liu et al. compared the 
OBD-based pruning method with the magnitude-based 
pruning method for DNN-based speech classification 
accuracy and speech recognition performance. The 
classification accuracy and word error rate (WER) results 
showed that the OBD-based pruning method was superior for 
highly pruned network [14]. However, the accuracy and 
WER showed a slight difference between the OBD-based 
pruning and magnitude-based pruning methods. The 
magnitude-based pruning method gained more attention 
because it could be simply and efficiently implemented. 
Recently, Han et al. proposed a deep compression method 
that combined magnitude-based pruning, quantization and 
Huffman coding. They removed the redundant network 
connections and learned only those connections that are 
important [16-17]. This magnitude-based pruning method 
was shown to reduce the number of parameters by 9× and 
13× on the AlexNet and VGG-16, respectively [16]. 
Motivated by this success in image processing, this study 
employed the magnitude-based pruning method for DNN-
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based speech enhancement. Although the magnitude-based 
pruning method has been established in theory and evaluated 
in many experiments, the application to DNN-based speech 
enhancement is still questionable. This is largely because the 
full-connected speech enhancement network is very complex, 
particularly when dealing with nonstationary background 
noise, and the accurate perceptual evaluation of the enhanced 
speech is difficult. 

Accurate evaluation of enhanced speech has long been a 
challenge for speech enhancement studies [18-23]. Many 
objective speech quality/intelligibility indices, e.g., speech-
transmission index [19], normalized covariance metric [20], 
short-time objective intelligibility metric [21] and across-
band envelope correlation metric [22], have been developed. 
However, these evaluation metrics could hardly predict the 
intelligibility of enhanced speech containing various non-
linear distortion, caused by the nonlinear processing in 
speech enhancement [18]. Compared to objective speech 
intelligibility evaluation, subjective listening tests require 
human listeners to recognize speech signals, and these 
generally have the most accurate results for speech 
intelligibility. The word correct rate (WCR) was often used 
as the subjective evaluation criteria, which is calculated by 
dividing the number of correctly identified words by the total 
words for each test condition [23]. Hence, this study utilized 
WCR as a subjective feedback index to evaluate speech 
enhanced by the pruned network. In summary, the major goal 
of this study was to prune the network based on the weight 
magnitude of each connection and neuron and use WCR as a 
subjective feedback index to evaluate the speech 
enhancement performance of the sparse network during 
network pruning.  

II. NETWORK PRUNING 

A. DDAE-based Speech Enhancement  

DDAE has been used to build a DNN architecture for 
speech enhancement [4, 5]. The basic structure of DDAE-
based speech enhancement is shown in Fig. 1.  

This network can be regarded as a multiple hidden layer 
neural associator with noisy speech as input and clean speech 
as output. The fast Fourier transform (FFT) is applied to the 
input signal to compute the spectrum of each overlapping  

 

windowed frame. A set of noisy-clean speech pairs are 
converted into a Mel-frequency power spectrum as the input 
features 𝑌

  and output features 𝑋
  during the training phase. 

The frame in the FFT is denoted by m. For a DDAE model 
with D hidden layers, it can be obtained that: 

 
where ሼ𝑊 … 𝑊ሽ and ሼ𝑏 … 𝑏ሽ are the matrices of the 

connections and the bias vectors for the DDAE model. 𝑋
  is 

the vector of enhanced speech corresponding to the noisy 
counterpart 𝑌

 , and the activation function is given by 
σሺ𝑡ሻ ൌ ሺ1  𝑒ି௧ሻିଵ. The final parameters are determined by 
optimizing the following objective functions: 

 
Here M is the total number of noisy-clean pairs. In the test 

phase, an inverse transform is performed to synthesize the 
restored speech waveforms with phase information of the 
corresponding noisy speech. The speech feature was 
extracted from frames with a 16 ms Hamming window and 
frame shifting of 8 ms. More detailed information regarding 
the DDAE-based speech enhancement can be found in 
studies [4, 5]. 

B. Iterative Network Pruning Method  

The network pruning method proposed in this study is 
based on the magnitude of parameter weights. Pruning 
converts a dense neural network into a sparse one and 
reduces the number of parameters and computations while 
adequately preserving speech enhancement performance. 

A block diagram of the pruning network method is shown 
in Fig. 2. Firstly, the network is trained normally to obtain 
the original parameter set 𝛩. The next step is to prune the 
network based on the magnitude of weights. The absolute 
value is employed as a simple index to determine the relative 
importance of the weight. Weights with absolute values 
below the pruning threshold are removed by setting them to 
zero. During this step, a mask matrix M is utilized to 
implement the network pruning. Weights below the pruning 
threshold have a corresponding mask of zero; otherwise, the 
value of the mask is one. The pruning network is realized by 
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Fig. 2 Block diagram of the iterative pruning method with retraining. 

 
Fig. 1 Structure of DDAE-based speech enhancement system. FFT, fast 
Fourier transform; IFFT, inverse fast Fourier transform. 
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computing the dot product between the original parameter set 
𝛩 and the mask matrix M. 

The third step is to retrain the sparse network to obtain the 
final weights. Note that the initialization network for the 
retraining is the sparse network from the second step rather 
than the initial random network. The sparse network has 
converged, and so, keeping the surviving parameters 
provides better performance when retraining the sparse 
network. During the retraining phase, the learning rate needs 
to be adjusted. This is because the weights have already 
attained local minima during the training network phase. 
Usually, the retraining learning rate is reduced by one or two 
orders of magnitude.  

The final step is to evaluate the performance of the pruned 
network using the WCR. The threshold is usually the WCR 
of speech enhanced by the original network. If the WCR is 
obviously lower than the threshold, the critical sparse 
network is obtained. Otherwise, it returns to the “prune 
network” step and prunes more weights. The pruning step 
combined with the one-time retraining is one iteration, and 
the maximum pruning ratio of parameters could be found by 
pruning the network progressively after several such 
iterations. This pruning method is called iterative pruning 
method.    

Compared to the iterative pruning method, direct pruning 
method removes the weights of the original network globally 
according to the pruning ratio instead of performing 
progressive pruning. The optimized pruning method repeats 
the iterative pruning and retraining in a greedy way, which 
reconverges the pruned network. The optimized iterative 
pruning method is expected to provide a higher network 
pruning ratio. 

III. EXPERIMENTS 

A. Databases and Settings 

Experiments were conducted using utterances excerpted 
from the Mandarin Chinese version of hearing in noise test 
(MHINT) [24], which were pronounced by a male native 
speaker with a fundamental frequency ranging from 75-180 

 

 

Hz, and recorded with a sampling rate of 16 kHz. This study 
focuses on challenging noisy conditions; hence two types of 
nonstationary noise were utilized, i.e., babble noise and 
construction jackhammer (CJ) noise. Half of the clean 
MHINT utterances were corrupted by the corresponding 
noise at –10, –5, 0, 5, and 10 dB input signal-to-noise ratios 
(SNRs) to form the training set. The other half of the clean 
utterances were corrupted by two noises at 0 dB input SNR 
to form the test set.  

The DDAE-based speech enhancement model consisted of 
three layers, with 500 neurons in each hidden layer. The 
number of trained network parameters was 581,580. Then the 
original network was pruned iteratively to several ratios. For 
subjective feedback, listening experiments were conducted 
with 20 subjects having normal hearing to obtain the WCR of 
the speech enhanced by the different pruned networks. 

B. Iterative Pruning 

The trade-off curves between the pruning ratio and WCR 
under the babble and CJ noise conditions are shown in Fig. 3 
and Fig. 4, wherein pruning ratio refers to proportion of 
parameters removed. The three network pruning methods 
were compared, including 1) iterative pruning with retraining, 
2) direct pruning with retraining, and 3) iterative pruning 
without retraining. In Fig. 3 and Fig. 4, it can be seen from 
the red line that the iterative pruning method with retraining 
could prune 50% of the parameters without significantly 
affecting the WCR of enhanced speech while the maximum 
pruning ratio of iterative pruning without retraining is only 
up to 25% (the dashed line). In addition, the direct pruning 
method with retraining performs better than iterative pruning 
method without retraining, but its maximum pruning ratio 
(the dotted line) is lower than that of the iterative pruning 
method (the solid line). 

C. Optimized Iterative Pruning 

Trade-off curves of the optimized pruning method between 
the pruning ratio and WCR under the babble and CJ noise 
conditions compared with the iterative pruning method with 

 

 

 
 

Fig. 3 Trade-off curves between pruning ratio and WCR of three 
pruning methods under the babble noise condition. 

 
 
 

Fig. 4 Trade-off curves between pruning ratio and WCR of three 
pruning methods under the CJ noise condition. 
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retraining, are shown in Fig. 5 and Fig. 6. Under the 0 dB CJ 
noise condition, the optimized pruning method, which 
repeated the pruning and retraining 5 times (the dotted line) 
or 10 times (the solid line), could remove 75% of the 
parameters without affecting the subjective speech perception 
performance of the pruned network. Under the babble noise 
condition, the maximum pruning ratio could reach up to 80%, 
equivalent to reducing the network parameters by 5×. The 
optimized pruning method performs better than iterative 
pruning method with retraining (the dashed line). In addition, 
there is little difference between the two optimized pruning 
methods that repeat the iterative pruning and retraining steps 
5 times and 10 times.  

IV. DISCUSSION AND CONCLUSIONS 

DNNs have been widely applied in speech signal 
processing for classification (automatic speech and speaker 
recognition) and regression (speech separation and 
enhancement) tasks. The DNN-based speech enhancement 
system automatically learns the nonlinear kernel space from 
noisy-clean speech pairs and performs well even under 
mismatched noise types; hence it can potentially be 
implemented in embedded and mobile speech processors. 
However, the network parameters are highly redundant, 
leading to large memory requirements and undesirable 
computational burden to embedded devices. This study 
evaluated magnitude-based network pruning methods to 
reduce network redundancy without significant degeneration 
in the speech enhancement performance. To dates, the 
accurate evaluation of the enhanced speech containing non-
linear distortions arising from speech enhancement 
processing is still a challenging task. Hence, the present work 
employed WCR as the subjective intelligibility feedback 
index to evaluate the performance of the sparse networks 
after network pruning.  

Experimental results related to the DDAE-based speech 
enhancement network in this work showed that the iterative 
pruning method with retraining could remove 50% of the 
network parameters without affecting the network  

 
 

performance in subjective speech perception. This result is 
superior to other implementations of the iterative pruning 
without retraining and direct pruning with retraining. 
Furthermore, by repeating the iterative pruning and retraining 
steps 5 times, the maximum pruning ratio of the network 
could be raised up to 80%, equivalent to a compression rate 
of 5:1. Future work will assess the efficacy of the optimized 
iterative pruning method on other speech enhancement 
networks with higher complexity or more challenging 
listening environments, and combine it with other 
compression strategies (e.g., quantization and hardware 
acceleration) to further reduce the network redundancy. 
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