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Abstract—Score normalization can improve speaker verifi-
cation (SV) performance by adjusting the distribution of test
scores to follow a normal distribution. In this paper, all of
the imposter scores for the target speakers are first obtained
from the normalization cohort; then, these scores are clustered
by an unsupervised clustering algorithm, and Gaussian mixture
models (GMMs) are used to fit the score distribution. The mean
and the standard deviation of the Gaussian component with the
maximum mean value is used in the SV score normalization
method. Experiments are carried out on the NIST SRE 2016
test set and the VOiCES test set. Compared with conventional
score normalization methods, the proposed method can effectively
improve SV performance.

Index Terms—speaker verification, score normalization, unsu-
pervised clustering

I. INTRODUCTION

Speaker verification system is used to verify a person’s
claimed identity by using voice characteristics. In such a typ-
ical two-category pattern-recognition task, the system makes
decisions by comparing the test scores with a global detection
threshold. In recent years, i-vector and x-vector based speaker
verification systems have become mainstream methods due to
their good performance [1, 2]. However, influenced by all
kinds of variabilities, such as channel, language, duration,
emotion and other factors, the score distribution of different
speakers is highly stochastic, and a fixed threshold cannot
achieve satisfactory performance.

Score normalization algorithms are often used to eliminate
these kinds of randomness [3]. Traditionally, there are two
basic methods: Z-norm and T-norm. In the Z-norm method,
score normalization parameters are estimated from scores
derived by scoring a set of imposter utterances through each
target speaker model. In the T-norm method, the normalization
parameters are estimated using scores derived at test time from
a set of imposter speaker models [4]. Based on these two meth-
ods, other advanced methods, including the ZT-norm, the TZ-
norm [5], the S-norm [6] and the KL-Tnorm [7] methods, are
also proposed, and they have achieved obvious performance
improvements in most of the state-of-the-art systems, such as
the GMM-UBM [7], i-vector and x-vector based SV systems.

In the above-mentioned conventional score normalization
methods, a set of imposter utterances are used to obtain nor-
malization parameters, and they are always fixed for different

speakers in the evaluation set. If the normalization cohort for
the T-norm method or the Z-norm method are matched with
the test conditions, these methods can achieve satisfactory
results. However, normalization parameters estimated from the
fixed cohort may be unsatisfactory in some cases. For example,
there are no cross-sex trials or cross-language trials in the
NIST SRE 2016 test set [8], and the normalization cohort con-
sists of unlabeled utterances which means that we cannot use
all scores obtained from the normalization cohort. To address
this problem, adaptive cohort selection (ACS) algorithms are
proposed to obtain normalization parameters using only part
of the normalization cohort instead of the whole cohort [9,
10, 11]. The cohort can be adaptively selected at the model
level [12] as well as at the score level [13]. The motivation
behind ACS is that the utterances from the most competitive
impostors are used to obtain the normalization parameters,
the mean and the standard deviation of scores obtained from
these utterances can reflect a more real distribution of a
speaker model or a test utterance. Through adjusting the score
distributions of different speaker models or test utterances
to a similar distribution, the system performance improves
significantly. In recent years, the most commonly used method
is the Top-norm method in [13] in which we just select the
top N scores for score normalization, but it still causes some
problems. N is a hyper-parameter which is set experimentally
using a development set, the system performance may vary
intensely with different N. The distribution of top N scores
is not Gaussian, and the estimated normalization parameters
cannot represent the real distribution.

Inspired by the work mentioned above, we proposed a new
type of ACS algorithm based on the unsupervised clustering
algorithm. First, the K-means clustering algorithm [14] is
applied to all of the scores. The scores belonging to the clusters
with small mean values are discarded and will not be used for
the following step. Then, an expectation-maximization (EM)
algorithm [15] is applied, and GMMs are used to fit the
distribution of the remaining scores. The parameters of the
Gaussian component with the largest mean value are used
for normalization. The method in this paper is experimentally
verified on the evaluation set of the NIST SRE 2016 dataset
and the VOiCES dataset.

The remainder of this paper is organized as follows. Section

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China 

553978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019



2 introduces the mainstream score normalization algorithms.
In section 3, we describe the proposed unsupervised clustering
score normalization algorithm in detail. Section 4 presents the
experimental setup and results. Finally, conclusions are given
in section 5.

II. SCORE NORMALIZATION TECHNIQUE

This section introduces several commonly used score nor-
malization methods.

A. Conventional score normalization

The Z-norm and T-norm methods are the most widely used
score normalization methods. Since they are similar, we only
introduce Z-norm method in detail. For the mth enrolled
speaker model em, we can obtain a score set s(em, t∗l ) using
all the utterances {t∗1, t∗2...t∗L} in the normalization cohort,
where t∗l is the lth imposter utterance. We fit the distribution of
these scores with a Gaussian distribution, and then the mean
µ̂ and the standard deviation σ̂ of the impostor scores can
be obtained. These parameters can be used to normalize the
actual test score s(o) of em for the final decision.

s(o)norm =
s(o)− µ̂

σ̂
(1)

Based on these two basic methods, S-norm method, where
the scores normalized using T-norm method and the scores
normalized using Z-norm method are averaged, is further
proposed. All these methods use the whole normalization
cohort to calculate the normalization parameters.

B. Adaptive score normalization

In adaptive score normalization methods, only part of the
normalization cohort is selected to compute the mean and the
standard deviation, and the selected utterances might change
for every speaker. We use the ACS algorithm in the Top-
norm method [14] as an example to illustrate this method.
In the Top-norm method, the scores for the whole cohort are
calculated as usual. However, only the top N scores are used to
calculate the normalization parameters, as depicted in Figure
1. N is always determined by the development set.

N(s)

s(o)

top N scores

Fig. 1: Score selection in adaptive score normalization. The
ordinate is the frequency of scores in a certain interval.

Since the mean and the standard deviation have changed, the
formula of score normalization with ACS is as follows:

s(o)norm =
s(o)− µ̂topN

σ̂topN
(2)

where µ̂topN and σ̂topN are estimated from the top N scores.
In most SV systems, score normalization with ACS can
achieve better performance than conventional methods. In this
paper, adaptive score normalization methods with the above-
mentioned ACS algorithm will be used for comparison, and
we call them top-N methods.

III. CLUSTERING-BASED SCORE NORMALIZATION

This section introduces an unsupervised clustering method
to estimate these two parameters from scores that are obtained
from the whole normalization cohort. The Z-norm method will
be used as an example to illustrate the proposed method, and
the T-norm method has a similar procedure. Similar to the Top-
norm method, it will only use some high scores to estimate
the normalization parameters. It contains two steps. The first
step is a data-cleaning step in which the K-means algorithm is
used and some scores are discarded, and the EM algorithm is
applied to obtain the normalization parameters in the second
step.

A. Data cleaning

In the NIST SRE 2016 evaluation set, there are no cross-
sex trials or cross-language trials. These kinds of trials will
exist when we use the whole normalization cohort for score
normalization. Scores of these trials will be lower than the
actual test scores obviously, so we only use the high scores
obtained from competitive impostors. If we make full use of
the information of these scores, the normalization parameters
can have a positive impact on the final detection. In order
to discard scores with small values adaptively, the K-means
algorithm is used.

Let us suppose there are L scores {s(em, t∗l ), l ∈ [1, L]}
obtained from all imposter utterances, where em is the mth

speaker model in the enrollment set, and t∗l is the lth imposter
utterance in the normalization cohort.

Algorithm1:K-means algorithm

1) Initialize the mean values of K clusters {µ1, µ2 . . . µK}.
2) Classify each score into a cluster C(µk) based on mini-

mum Euclidian distance:
If [s(em, t

∗
l )− µk]

2 ≤ [s(em, t
∗
l )− µk′ ]

2
,∀k′ ∈ [1,K]

then s (em, t
∗
l ) ∈ C (µk)

3) Update the mean value of each cluster:
µk = 1

|C(µk)|
∑

s(em,t∗l )∈C(µk)

s (em, t
∗
l )

where |C(µk)| represents the number of scores belongin-
g to cluster C (µk).

4) Repeat step 2) and 3) until the clusters converge.

The clusters with smaller mean value are discarded, and the
scores in the top K ′ clusters are retained. In fact, if we use the
mean and the standard deviation of the top one cluster for score
normalization, it can also improve the system performance.
Through our analysis, it is because the distribution of top
one cluster is most similar to that of scores obtained under
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the actual test conditions. However, using this step as a data
cleaning step and using the information of top K ′ clusters to
initialize parameters in the next step could achieve a further
improvement.

B. Computing normalization parameters

We believe that the distribution of the remaining scores do
not follow a single Gaussian distribution, and we want to find
more reliable normalization parameters that can reflect the
actual score distributions of speaker models or test utterances.
GMMs are used to fit the score distributions, and the EM
algorithm is used in the clustering step. We take the mean and
the standard deviation of top K ′ clusters as the initial values
of the GMMs, and the weight wi is initialized according to
the following formula:

wi =
|C(µi)|
|C|

(3)

where |C| represents the total number of remaining scores.
Then the EM algorithm is applied to fit the score distribution.

Algorithm2:EM algorithm

1) Fix the parameter values
{
wi, µi, σ

2
i

}
of the ith Gaussian

component, the posterior probability of score s (em, t
∗
l )

can be calculated using Bayes’ theorem:

p (i|s (em, t
∗
l )) =

wiN(s(em,t∗l );mi,s
2
i )∑

j wjN(s(em,t∗l );mj ,s2j)
2) Update

{
wi, µi, σ

2
i

}
using p (i|s (em, t

∗
l )):

w′i = 1
|C|
∑|C|
l=1 p (i|s (em, t

∗
l ))

µ′i =
∑|C|

l=1 s(em,t
∗
l )p(i|s(em,t

∗
l ))∑|C|

l=1 p(i|s(em,t∗l ))

σ′
2
i =

∑|C|
l=1 [s(em,t

∗
l )−µ

′
i]

2p(i|s(em,t∗l ))∑|C|
l=1 p(i|s(em,t∗l ))

3) Repeat step 1) and 2) until the models converge.

When the GMMs converge, the mean and the standard devi-
ation of the Gaussian component with the largest mean value
are taken as the final normalization parameters, as depicted in
Figure 2.

得分规整

EM
K-mean

Pr (s)

s(o)

top Gauss(ߤ, (ߪ

ᇱܭ Gaussian components

Fig. 2: Clustering using the EM algorithm. The ordinate is
the probability of scores in a certain interval.

IV. EXPERIMENTS AND DISCUSSION

A. Datasets

We carried out experiments on the core test of the NIST
SRE 2016 data. There are approximately 2 million trials, with
37058 target and 1949462 non-target trials in the NIST SRE
2016 core test. The nominal durations of enrollment speech
files are 60 s, while those of the test files vary from 10 to 60 s.
The data from previous NIST SRE evaluations (2004-2010),
Switchboard and Mix6 dataset are used as the training sets.

The NIST SRE 2016 corpus contains two major languages,
Tagalog and Cantonese, which have never appeared in previous
NIST SRE evaluation and training data. We use 2272 files
from the NIST SRE 2016 development set as the normalization
cohort, of which languages are matched with the evaluation
set, but these files are unlabeled.

B. System description

The experiments on the NIST SRE 2016 core data are based
on the i-vector/PLDA framework. The whole process is mainly
implemented with Kaldi open source code [16] while the
PLDA is trained using in-house code. Mel-Frequency cepstral
coefficient (MFCC) features with deltas and double deltas are
extracted, which are 60-dimensional. A 3s sliding window is
used for short-term mean and variance normalization. The
voice activity detection (VAD) algorithm is used to remove
silent frames. A gender-independent 2048-component GMM-
UBM with diagonal covariance matrices is trained using
unlabeled utterances of the NIST SRE 2016 development set.
After the UBM is trained, a 600-dimensional total variability
matrix is trained using the abovementioned training sets. After
extracting the i-vectors, the training set and evaluation set
are centred separately while the latter is centered using the
mean of the unlabeled data. The i-vectors are reduced to
400 dimensions through the LDA algorithm. Since the prior
of the G-PLDA model follows a Gaussian distribution, data
whitening and length normalization are adopted before training
the PLDA model. After preprocessing, the PLDA model is
adopted as a backend classifier for speaker verification, where
the sizes of speaker and channel matrices are 250 and 10,
respectively.

In the stage of score normalization, three-quarters of utter-
ances are randomly selected from the unlabeled data as the
Z-norm set, and the remaining utterances are used as the T-
norm set. Several mainstream score normalization methods are
used for comparison.

C. Results

The equal error rate (EER), minimum error cost function
(DCFmin) and actual error cost function (DCFact) are used
as evaluation metrics [17].

The experimental results are listed in Table 1. The system
without any score normalization is marked as “baseline”. “Z-
norm”, “T-norm” and “S-norm” represent the systems using
all scores for normalization. When we use top N scores for
computing the mean and the standard deviation, a prefix “top”
is added for these system names. We use a prefix “GMM”
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for the proposed score normalization method. The hyper-
parameters in the score normalization methods are tuned using
the development set of NIST SRE 2016 which also have two
languages and some unlabeled data.

TABLE I: Results of different normalization methods

No. Method EER DCFmin DCFact

0 Baseline 13.94 0.7716 0.9250
1 Z-norm 14.61 0.7871 0.8339
2 T-norm 14.27 0.7694 0.8133
3 S-norm 14.17 0.7685 0.8118
4 top Z-norm 14.23 0.7526 0.7993
5 top T-norm 13.93 0.7445 0.7732
6 top S-norm 13.72 0.7413 0.7701
7 GMM Z-norm 14.04 0.7411 0.7448
8 GMM T-norm 13.87 0.7292 0.7387
9 GMM S-norm 13.69 0.7167 0.7214

As shown in Table I, the GMM S-norm method performs
best. Compared with the baseline, a relative 7.1% DCFmin

and 22.0% DCFact improvement are obtained. Additionally,
the systems using adaptive cohort selection for score normal-
ization can achieve better performance than the systems that
do not use it.

D. The effect of hyper-parameters

There are some hyper-parameters in the top-N methods and
the proposed score normalization methods. The system perfor-
mance may vary with different hyper-parameters. The number
of GMM components in the proposed unsupervised clustering
method is a hyper-parameter. We list the results of the Z-
norm method with different numbers of GMM components in
Table II. The symbol “∆” indicates the difference between the
largest and the smallest value.

TABLE II: Results with different numbers of GMM
components

Num EER DCFmin DCFact

4 14.13 0.7441 0.7525
5 14.01 0.7436 0.7463
6 14.04 0.7411 0.7448
7 14.08 0.7423 0.7427
8 14.16 0.7452 0.7502

∆ 0.15 0.0041 0.0098

TABLE III: Results with different top N numbers

Num EER DCFmin DCFact

150 14.23 0.7526 0.7993
200 14.35 0.7562 0.8024
250 14.13 0.7539 0.7965
300 14.28 0.7617 0.7872
350 14.35 0.7644 0.7923
400 14.42 0.7678 0.8171

∆ 0.29 0.0152 0.0299

N is the number of scores selected for the top-N methods,
and we also list the results with different values of N in

Table III. The top Z-norm method is used for comparison.
From Table II and Table III, the performance fluctuation
of the top-N methods is bigger than that of the proposed
method, which means that the hyper-parameter of the proposed
method has less effect on final detection performance. The
hyper-parameters are usually tuned using a development set.
However, there is no development set or the development set is
mismatched with the evaluation set in most cases. The method
proposed in this paper can solve this problem to some extent.

E. Bias of the estimated parameters

As mentioned above, score normalization method can
achieve satisfactory results only if scores obtained from the
normalization cohort is matched with the actual test conditions.
We build a toy experiment here to calculate the bias between
the mean of the normalization parameters and that of the test
set. We first calculate the mean and standard deviation of
impostor scores in the test set. The bias of the mean between
the normalization cohort and test set is defined as follows:

µ|bias| =
1

M

∑M

n=1
|µ̂n − µn| (4)

where M is the total number of enrollment speakers (for Z-
norm) or test utterances (for T-norm) in the test set; µ̂n is the
mean used for score normalization; and µn is obtained from
the test set. µ|bias| reflects the bias between the normalization
cohort and test set.

TABLE IV: Bias between the normalization cohort and the
test set

Method µ|bias|

Z-norm 93.6
top Z-norm 36.7

GMM Z-norm 15.3

T-norm 72.6
top T-norm 22.9

GMM T-norm 17.4

From the results in Table IV, we can see that the bias of
the GMM score normalization is smaller than that of other
methods. These results indicate that the proposed method can
approximate the distribution of the test set better than other
methods.

F. Additional experiments on VOiCES corpus

We also applied the proposed score normalization algorithm
on the “VOiCES from a Distance Challenge 2019”, and we
develop the system for the fixed condition on two public
datasets: VoxCeleb and SITW.

The VOiCES corpus is recorded in an acoustically chal-
lenging environment. The speech data contains much noise,
reverberation, overlapping speech, laughter and acoustic arti-
facts, and the duration of speech utterances varies from 12 to
15 s. It consists of 20096 target trials and 3985782 non-target
trials. We used VoxCeleb1 and VoxCeleb2 as the training set.
The SITW corpus was used as a normalization cohort.
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Our systems are based on the x-vector/PLDA and i-
vector/PLDA frameworks. We build 22 subsystems using
different i-vector and x-vector frontends. The PLDA algorithm
is adopted as a backend classifier for all the i-vectors/x-vectors.
The submitted systems are fused at score-level. A detailed
description of our system can be found in [18].

Finally, we submit three systems. The scores of all subsys-
tems are fused with equal weights for system 1. For system
2, the scores of each subsystem are normalized using the
above mentioned unsupervised clustering score normalization.
The score fusion weight of each subsystem is tuned in the
development set. For system 3, the procedure of fusing sub-
systems is almost the same as that of system 2 except that
score normalization is not applied.

As mentioned in [19], Cllr is an important metric to measure
the quality of a system. For the purpose of analyzing how
well a system is calibrated across all operating points, Cllr is
defined as follows:

Cllr =
1

2× log(2)
× (

∑
log(1 + 1/s)

Ntar
+

∑
log(1 + 1/s)

Nnon
)

(5)
where s is the likelihood ratio for a trial, and Ntar and
Nnon represent the number of target and non-target trials,
respectively. The more reliable the identification system is,
the lower the Cllr value is.

TABLE V: Results on test set of VOiCES from a Distance
Challenge 2019

System EER DCFmin DCFact Cllr

1 6.82 0.5088 0.5135 1.8710
2 6.71 0.5201 0.5453 0.4049
3 6.79 0.5173 0.6234 1.4430

The final result on the test set is shown in Table V. The
system that uses the proposed algorithm in this paper achieves
competitive performance compared to other systems. We can
see that the Cllr of system 2 improves significantly compared
with system 1 and system 3 while the EER improves slightly.
For fair comparison, we should only compare system 2 with
system 3, because they have the same fusion strategy which
is very important for the fusion systems. We can find that the
DCFact also improves. However, the DCFact and DCFmin

of system 2 are even worse than those of system 1. There are
two reasons. On the one hand, the normalization cohort is not
matched with the evaluation set in channel and some other
factors. On the other hand, there are no rules in trials which
does not like that in the NIST SRE 2016, and the proposed
method cannot give full play to its advantage.

V. CONCLUSIONS

In this study, we employ clustering-based score normaliza-
tion in the speaker verification system. The proposed method
achieves an obvious performance improvement on the NIST
SRE 2016 and the VOiCES from a Distance Challenge 2019.
Further analysis shows that the proposed adaptive cohort
selection algorithm can achieve stable performance.
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