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Abstract— Mapping the depth video into an optimally 
representation in two-dimensional space are of vital importance 
for depth video based human action understanding. Meanwhile, 
such representation will lost some useful information inevitably, 
a feature learning approach not only separable but also 
discriminative are essential for action recognition task from such 
representation. This paper presents a new method for action 
recognition base on convolutional neural networks with joint 
supervision which shares the merits of both representation as 
mentioned above and convolutional neural networks. The 
advantages of our method come from ( i ) The whole procedure 
of our method is done automatically no matter the generation of 
representation or deeply feature learned; ( ii ) The deeply 
feature using the proposed deep architectures to learned has 
high discriminative capacity to improve the accuracy of action 
recognition effectively compared with handcrafted features. We 
conduct experiments on two challenging datasets: 
MSRDailyActivity3D and SYSU 3D HOI. Experimental results 
show that our method outperform previous methods based on 
hand-crafted features. Our method also achieves superior 
performance to the state-of-the-art on these datasets.  

I. INTRODUCTION 

Human action recognition in videos attracts increasing 
research interests in computer vision community due to its 
potential applications in video surveillance, human computer 
interaction, and video content analysis [1]. Video-based 
human action recognition is challenging because significant 
intra-action variations exist due to changes in viewpoint, 
illumination, visual appearance (such as color and texture of 
clothing), scale (due to different human body sizes or 
distances from the camera), background and speed of 
performing an action. Some challenges have been simplified 
by the use of real-time depth cameras (e.g. Kinect) that 
capture the texture and illumination invariant human body 
shape and simplify human segmentation [2]. However, action 
recognition from representation with two-dimensional (2D) 
space generated from depth video remains a major challenge 
and is explicitly addressed in this paper. 

Most of the progress [3, 4, 7, 17, 18, 19] in the field of 
action recognition based depth videos over the last decade 
have been proposed. The performance of these approaches 
highly depends on the handcrafted features and is limited by 
the discriminative power of the handcrafted features, which 
are shallow high-dimensional descriptions of local or global 

spatio-temporal information and their performance varies 
from dataset to dataset. The advent of modern learnable 
representations such as deep convolutional neural networks 
(CNNs) has improved dramatically the performance of 
algorithms in many image-understanding tasks, offering state-
of-the-art results on image recognition [9], segmentation [10], 
detection and retrieval [11]. However, there is performance 
only in color image understanding until [14] that proposed a 
method called Structured Images, an effective yet simple 
video representation for RGB-D based action recognition, 
which is a strategy for transforming the problem of depth 
videos based action recognition to image classification and 
making effective use of the rich information offered by the 
depth videos. 

In spite of Structured Images dramatically outperforms 
existing state-of-the-art in action recognition based on RGB-
D. However, it remains unclear how depth videos can be 
optimally represented that limit the accuracy of action 
recognition lies higher up. [15] proposed a discriminative 
feature learning approach for deep face recognition, 
significantly improving the previous results and setting new 
state-of-the-art for both face recognition and face verification 
tasks. Since it is not only separable but also discriminative 
deeply learned features which is need to provide for face 
recognition task.  

We suppose depth videos based human action recognition 
is also need a discriminative deeply learned features to 
address the classification problems after dimension reduction 
by mapping the depth videos into 2D space such as Structured 
Images. Motivated by the above analysis, this paper proposes 
a depth videos based action recognition method from a novel 
perspective that try to exploit discriminative information quite 
adequately from Structured Images, as illustrated in Figure 1. 
To achieve this goal, we proposed a CNNs based deep 
architecture with joint supervision to learn discriminative 
feature from Structured Images. We share the merits of both 
representation Structured Images and CNNs. Specifically, the 
CNNs are trained under the joint supervision of the softmax 
loss and center loss, with a hyperparameter to balance the two 
supervision signals, to learn discriminative convolutional 
feature from Structured Images. 

We evaluate our method on the MSRDailyActivity3D and 
SYSU 3D HOI datasets individually and achieve results 
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which are better than the state-of-the-art, and comparison with 
state-of-the-art show that our method achieves 1.88% and 
1.66% higher accuracies respectively than the nearest 
competitor. 
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DDIF
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JointDepth video
 

Fig. 1 The process diagram of our method. 

II. RELATED WORKS 

With the resurgence of neural networks invoked by Hinton 
and others [21], deep neural architectures have been used as 
an effective solution for extracting high level features from 
data. There are a number of attempts to apply 2D deep 
architectures for video recognition. In [22], spatio-temporal 
features are leaned unsupervised by a Convolutional 
Restricted Boltzmann Machine and then plugged into a CNNs 
for action recognition. In [23], 3D convolutional network is 
used to automatically learn spatio-temporal features directly 
from raw data. Recently, several CNNs architectures for 
action recognition in [24] is compared based on Sport-1M 
dataset, comprising 1.1 M YouTube videos of sports activities. 
They find that for a network, operating on individual video 
frames, performs similarly to the networks whose input is the 
stack of frames, which indicates that the learned 
spatiotemporal features do not capture the motion effectively. 
In [25], spatial and temporal streams are proposed for action 
recognition. Two CNNs are trained on the two streams and 
combined by late fusion. The spatial stream is comprised of 
individual frames while the temporal stream is stacked by 
optical flow. However, the best results of all above deep 
learning methods can only match the state-of-the-art results 
achieved by handcrafted features. 

For depth videos based action recognition, many works 
have been reported in the past few years. Li et al. [3] sample 
points from silhouette of a depth image to obtain a bag of 3D 
points which are clustered to enable recognition. Yang et al. 
[26] stack differences between projected depth maps as DMM 
and then use HOG to extract the features on the DMM. This 
method transforms the problem of action recognition from 3D 
space to 2D space. In [5], HON4D is proposed, in which 
surface normal is extended to 4D space and quantized by 
regular polychorons. Following this method, Yang and Tian 
[6] cluster hypersurface normals and form the polynormal 
which can be used to jointly capture the local motion and 
geometry information. Super Normal Vector (SNV) is 
generated by aggregating the low-level polynormals. 
However, all of these methods are based on carefully hand-

designed features, which are restricted to specific datasets and 
applications. 

Our work is inspired by [14] and [15], where we propose a 
new method for action recognition using CNNs with joint 
supervision which shares the merits of both representation 
Structured Images and CNNs. Since we can take advantage of 
the rich experience of design 2D CNNs for a long term and 
pre-trained ImageNet models. At the same time, we can 
automatically complete the process of human action 
recognition whether in the generation of Structured Images or 
the proceed of CNNs training and its verification, rather than 
carefully constructed the hand-crafted feature. 

III. STRUCTURED IMAGES REVISITED 

As shown in Figure 1, our proposed method is based on 2D 
representation for dimension reduction and we choose 
Spatially Structured Dynamic Depth Images [14], referred to 
as Structured Images. In this section, we briefly review the 
map process of Structured Images. It is worth noting that our 
method is independent of the method of mapping depth 
videos into images in 2D space, and we use Structured Images 
due to its good performance.  

Firstly, three sets of Depth Dynamic Images (DDIs) is 
processed hierarchically at three spatial levels guided by 
skeleton, namely, joint level, part level and body level, which 
are constructed from an image sequence through bidirectional 
rank pooling [12, 13]. This representation aggregates motion 
and structure information from global to fine-grained levels 
for action recognition. Each set of dynamic images is 
represented by two dynamic images, forward and 
backward(refer to as DDIF and DDIB, respectively). 

A. Rank pooling 

Given a sequence with k frames, which can represented 

as 1 2, ,..., ,...,t kx x xX x=< > .And ( )t
dRxϕ ∈ be a representation or 

feature vector extracted from each frame tx . 

Let ( )1
1 t
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t
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The parameters *w represent the information that frame 
representation tν comes before the frame representation 1tν + , 

and can be used as a descriptor of the sequence. ijε is the 

smallest non-negative number and λ  is scalar coefficients. 
In fact, accurate optimization of eq. (1) has a disadvantage: 

optimization is slow. We adopt rank pooling for the task of 
DDIs too, but make a modification. Unlike [14], we propose 
an approximation to rank pooling which is much faster and 
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works as well in practice. An alternative construction of the 
rank pooling does not compute the intermediate average 

features ( )1
1 t

t tx
t

V τ ϕ== Σ , but uses directly individual video 

features )( txϕ in the definition of the ranking scores (1). In this 

case, the derivation above results in a weighting function 
which is linear in t . 

B. Structured Images 

Since in rank pooling the averaged feature up to time t is 
used to classify frame t, the pooled feature is biased towards 
beginning frames of the depth sequence, hence, frames at the 
beginning has more influence to *w .To overcome these 
drawbacks, the rank pooling is applied in a bidirectional way 
to convert one video sequence into two dynamic images. 
DDIs are constructed from depth sequence. Each dynamic 
image is fed into a CNNs. When bidirectional rank pooling is 
applied to a sequence of depth maps, two DDIs, DDIF and 
DDIB, are generated. The resulting DDIs are also illustrated 
in Figure 1. As shown, DDIs effectively capture the 
spatiotemporal information. 

IV. CNNS WITH JOINT SUPERVISION 

   In this section, we describe a deep architecture based on 
CNNs for depth videos based action recognition, which shares 
the benefits of both Structured Images and CNNs. We first 
introduce the deep architectures of CNNs with joint 
supervision we used. Then, we show how to adapt the model 
trained on large datasets ImageNet to train our networks. 
Finally, based on trained model and Structured Images, we 
describe the details of how to calculate score fusion. 

A.    CNNs with joint supervision 

Our networks start with designing deep architecture based 
on CNNs for feature learning and label prediction, Map the 
input video to the deep feature of the last hidden output, and 
then map to the prediction labels from images. The networks 
in our method contain three separate CNNs, namely body nets, 
part nets and joint nets. Each net as mentioned above are 
designed with the same architecture used for Structured 
Images, in hierarchically at three spatial levels, joint level, 
part level and body level, respectively. We aggregate motion 
and structure features from global to fine-grained levels for 
action recognition by the three deep architectures. 

 
C: The convolution layer
P: The max-pooling
FC: The fully connected layer

Softmax
Loss

Center
Loss

λ

C P C P C C C P F
CInput F

C
F
C

 
Fig. 2  Deep architecture of we proposed. 

Table 1 Layer configuration of our three nets 
 

Layer C1 C2 C3 C4 C5 FC1 FC2 FC3 

numb 96 256 384 384 256 4096 4096 1000 

filter 112 52 32 32 32    

stride 4 1 1 1 1    

pad 0 2 1 1 1    

 
The details about our networks are schematically shown in 

Figure 2, following [8]: each net contains eight layers with 
weights, the first five convolutional layers and the remaining 
three fully-connected layers. We used this architecture due to 
transfer knowledge from similarly works is extremely 
convenient and economic, without training the networks from 
sketch. The training details can be found in following 
subsection. The layer configuration of our three nets is shown 
in Table 1. 

As shown in Figure 2, different from other existing method 
only used softmax loss to guide the training process of 
networks. In our deep architecture, the neural network is 
trained under the joint monitoring of soft maximum loss and 
center loss, and the two monitoring signals are balanced by 
hyperparameters. The center loss is connected to the 
penultimate fully-connected layers according to our repeated 
trial experience. Intuitively, the softmax loss forces different 
classes of deep features to stay separate ，  center loss 
effectively pulls similar deep features to their center. By 
combining the center loss with the softmax loss to jointly 
supervise the learning of CNNs, the discriminative power of 
the deeply learned features can be highly enhanced for robust 
action recognition. The softmax loss function is presented as 

1
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                       （ ）2  

And the center loss function, formulated as 

2
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= −                                       （ ）3  

The d
ix R∈ denotes the i th deep feature, belonging to 

the iy th class. d is the feature dimension. The size of mini-

batch and the number of class is m and n , respectively. 
d

jW R∈ denotes the j th column of the weights d nW R ×∈ in the 

last fully-connected layer and nb R∈ is the bias term. In fact, 
the performance is nearly of no difference without bias term. 
Thus, we omit the biases for simplifying analysis. In Eq.3, 

The
i

d
yc R∈ denotes the iy th class center of deep features, 

which can be computed by 

i
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Where the α is a parameter restricted in 0,1   . In order to 

adopt the joint supervision of softmax loss and center loss to 
train the deep architecture for discriminative feature learning. 
The formulation can be presented as 

2
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           （ ）6  

Where λ is a hyperparameter used for balancing the two 
loss functions and affect results of the accuracy of recognition 
when it is changing. The conventional softmax loss can be 
considered as a special case of this joint supervision while λ is 
fit to zero. 

B.    Network Training 

   After we construct the Structured Images from depth videos 
and complete designs of networks, three nets are trained on 
the images of the three hierarchically spatial levels. 

The implementation is derived by Caffe toolbox which was 
based on the NVIDIA Quadro P2000 card [20]. The training 
process is similar to [8]: mini-batch random gradient descent 
learning is adopted for network weights, momentum is set at 
0.9, and weight attenuation is set at 0.0005. All the hidden 
weights use rectifier activation function; In each iteration, 256 
transformed training images are sampled to construct a mini- 
batch of 256 samples and adjust the size of all images to 
256×256; For artificially expand the training data (data 
increase), firstly, 224×224 patch from the selected center 
randomly cropped images to enhance the data by 2048 times, 
then random horizontal flip, but we do a small modification, 
no RGB jitter is initially because the Structured Image is 
robust noise; The network was trained with the pre-training 
model of ILSVRC-2012 and set the learning rate to 10-3. For 
each network, we train 100 loops and slow down the learning 
rate every 20 loops. For all experimental settings, we set the 
dropout regularization ratio to 0.5 for reduce the complex 
cooperative adaptation of neurons in the network. For joint 
supervision, the proprietary hyperparameters α and λ  are set 
to 0.5 and 0.003 respectively in experiential. 

C.  Score Fusion 

During the test, we given a depth videos, after constructed 
the three hierarchically images, we only use Structured 
Images with 224 × 224 patches cropped from the center but 
without other data augmentation operation. We only adopt 
average score fusion method, the simplest fusion method 
compared with other two commonly used late score fusion 
methods (multiply and maximum score fusion), to improve 
the final accuracy. The average scores for each test sample are 
calculated from each of the three nets. The final class score 
for a test sample is the average of the outputs from each level 
of Structured Images. Thus 

 

 = =
•= 3

1

2

16

1
s

i j

i
jtest scorecore            (7) 

Where testscore  represents the final class score for a test 

sample, while i
jscore denotes the score of j th test sample 

for i th level of Structured Images. 

V. EXPERIMENTS 

In this section, we evaluated our proposed method on two 
datasets involve human-object interactions. The former is 
MSRDailyActivity3D Dataset [4] whereas the latter is SYSU 
3D HOI Dataset [16]. We firstly generate Structured Images 
from all depth videos includes training and testing samples for 
the following procedures. CNNs and Structured Images, in all 
proceeding, are setting the same configuration for the two 
datasets provide evidence that the powerful generalization 
ability of our deep architectures can work. Detail of network 
training have describe in section 4.2, but for testing, the 
hyperparameteris set to zero due to we have learn the 
discriminative deeply features in the training process. 

The MSRDailyActivity3D Dataset is a daily activity 
dataset which was captured by a depth camera. This dataset 
contains 16 classes of actions: “drink”, “eat”, “read book”, 
“call cellphone”, “write on paper”, “use laptop”, “use vacuum 
cleaner”, “cheer up”, “sit still”, “toss paper”, “play game”, 
“lay down on sofa”, “walking”, “play guitar”, “stand up” and 
“sit down”. It has 10 actors and each actor performs each 
activity twice, one in stand-up position and the other in sit 
down position. Actors in this dataset present large spatial and 
scaling changes. Moreover, most activities in this dataset 
involve human-object interactions. For this dataset, we follow 
the same experimental setting as [4] and obtain the final 
accuracy of 99.38%. The performance of our method 
compared to the previous approaches is shown in Table 3.  

 
Table 2 Comparison on different training setting for 

MSRDailyActivity3D Dataset 
Method body part joint fusion 

Removed center loss 62.50% 92.50% 93.13% 96.88% 

Normal condition 65.63% 90.63% 93.75% 99.38% 
 

Table 3 Recognition accuracy comparison of our method and previous 
approaches on MSRDailyActivity3D 

 Method Accuracy 

IPM [17] 83.30% 

SNV[6] 86.25% 

DS+DCP+DDP+JOULE-SVM[16] 95.00% 

Range Sample[7] 95.63% 

MFSK+BoVW[18] 95.70% 

SSDDI[14] 97.50% 

Our method 99.38% 

 
To highlight the ability in improving the accuracy of action 

recognition with joint supervision in the deep architectures, 
we considered another scenario for this dataset, where is set to 
zero while training the nets. That is to say, the joint 
supervision is degeneration to softmax loss alone without 
center loss. The results are listed in Table 2, which we can see 
that the accuracy of action recognition improved greatly 
compared with the networks without using joint supervision. 
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The reference experiments show that the method we proposed 
is effective. 

 
Table 4 Comparison of the proposed method with previous approaches on 

SYSU 3D HOI Dataset 

Method Accuracy 

HON4D[5] 79.22% 

DS+DCP+DDP+MTDA[19] 84.21% 

DS+DCP+DDP+JOULE-SVM[16] 84.89% 

SSDDI[14] 95.42% 

Our method 97.08% 

 
The SYSU 3D HOI Dataset includes 480 depth video clips 

contains 12 different activities performed by 40 subjects. For 
each activity, each participant manipulates one of the six 
different objects: phone, chair, bag, wallet, mop and besom. 
Although each video clip corresponding RGB frames, depth 
sequence and skeleton data, we only use the latter two. It is 
challenging to our method due to the dataset was focus on 
human-object interactions. We follow the data protocol as 
[16] and report the results in Table 4, where we can see that 
our method obtains the final accuracy of 97.08%. 

From the Table 3 and 4 we can see that our proposed 
method can outperform SSDDI [14] greatly and can over the 
state-of-the-art methods. The reasons probably are: (1) there 
are so many actions that are similar, such as call cellphone, 
drink and eat, they have similar motion shapes but have subtle 
motion so that the representations in 2D are very similar and 
confusing, which limited the higher accuracy of recognition 
on many existing methods; (2) the assumption we suppose in 
the beginning of this paper maybe right that the deeply 
learned features need to be not only separable but also 
discriminative for action recognition task; (3) training the 
networks with initialising the weights using the pre-trained 
models is profitable. 

VI. CONCLUSIONS 

In this paper, a method for action recognition using 
convolutional neural networks with joint supervision from 
depth videos has been proposed. The method has been 
evaluated on the most widely used datasets and compared 
with state-of-the-art methods. The proposed method achieved 
state-of-the-art results on individual datasets. The way of 
action recognition is done automatic in the whole process 
without careful handwork. The experimental results showed 
that with the joint supervision by jointly using the center loss 
and the softmax loss, the highly discriminative features can be 
obtained for robust action recognition. The experimental 
results have also showed that the strategies developed for 
applying CNNs to small datasets worked effectively. In our 
future work, we will combine the proposed method together 
with point cloud to improve the recognition accuracy. 
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