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Abstract—Among various voice conversion (VC) techniques,
average modeling approach has achieved good performance as
it benefits from training data of multiple speakers, therefore,
reducing the reliance on training data from the target speaker.
Many existing average modeling approaches rely on the use of i-
vector to represent the speaker identity for model adaptation. As
such i-vector is extracted in a separate process, it is not optimized
to achieve the best voice conversion quality for the average
model. To address this problem, we propose a low dimensional
trainable speaker embedding network that augments the primary
VC network for joint training. We validate the effectiveness of the
proposed idea by performing a many-to-many cross-lingual VC,
which is one of the most challenging tasks in VC. We compare
the i-vector scheme with the speaker embedding network in the
experiments. It is found that the proposed system effectively
improves the speech quality and speaker similarity.

I. INTRODUCTION

Voice conversion (VC) aims to modify the speech of one
speaker (source) to make it sound like another speaker (target).
Based on the availability of parallel training data, VC can be
broadly classified into parallel and non-parallel systems [1]. In
comparison to parallel VC, non-parallel VC is more practical
as it does not require the source and target speakers to record
the same set of speech utterances for system training [2].
As a special case in nonparallel system, cross-lingual VC is
even more demanding since the speech utterances in different
languages are not possible to be parallel, and the phonetic
information of the involved languages can be very different [3].

Over the last few decades, a number of techniques have
been proposed aiming to improve the converted speech in two
aspects: speech quality and speaker similarity. Many conven-
tional approaches like vector quantization (VQ) [4], [5], frame
selection [6]–[8], Gaussian mixture modeling (GMM)-based
methods [2], [3], [9], [10] and vocal tract length normalization
(VTLN) [11] have shown their success in cross-lingual VC.
Nevertheless, the converted voice quality is still far from the
natural speech [2].

Neural network approaches [12]–[21] are effective as they
are powerful to model and generalize the complex spectral
mapping function from the input to output features. While,
to achieve a good conversion result, they usually require a
large number of training data from the target speaker, which
is expensive and inconvenient in practice. Average modeling
approach is then proposed to leverage the large database from
many other publicly available speakers during training [22]–
[24]. As an average model learns from multiple speakers,

it generates a voice that represents the average voice of all
speakers in the training database. Although an average model
generates good quality speech signals in general [24], [25], it
requires an adaptation step to obtain the converted samples in
a target speaker’s voice.

The commonly used speaker adaptation techniques can be
summarized into three main categories. First, the conversion
model can be adapted from the average model with few
arbitrary sentences from the target speaker in a different
language [26]. Such techniques usually suffer from distortion
due to the differences in two language systems. Second, a
speaker embedding vector like i-vector [24] could be appended
to the input features to condition the speaker identity. Thus
the model can be trained to learn the speaker-dependent
mapping function. However, the i-vector extraction model
is following the speaker verification formulation [27], [28],
which is not jointly optimized for VC for optimum voice
conversion performance. Last, a trainable speaker embedding
network is introduced in [29] for multi-speaker text-to-speech
(TTS). The low-dimensional speaker code is trained jointly
with input features via backpropagation for model adaptation.
Nevertheless, this method is only capable to model speakers
seen in the training data.

In our recent work, an average modeling approach has been
proposed for cross-lingual VC [30], where i-vector is utilized
as the speaker identity representation to achieve many-to-many
VC and it is extracted by a separate model designed for
speaker verification purpose. Although it works reasonably
for cross-lingual VC, the conversion performance is highly
dependent on the quality of i-vector. Moreover, we may not
be able to obtain the optimal results since i-vector is not
optimized together with the VC system.

In this paper, we propose a jointly trained speaker em-
bedding network to encode the speaker information into the
primary VC network for system optimization. The speaker
embedding is obtained by an auxiliary network from acous-
tic features, that is called speaker embedding network. The
resulting speaker embedding is then repeatedly concatenated
to the transformed input linguistic features at each frame.
The joint optimization strategy is applied to the speaker
embedding network and primary VC network to map the
linguistic information conditioned on the speaker embedding
to its corresponding acoustic information via backpropagation
algorithm. In this way, the speaker embedding network is able
to directly model the relevant features for the conversion task.
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Fig. 1. The training stage and conversion stage of the cross-lingual voice conversion system with the average model conditioned on i-vector.

Furthermore, our proposed method does not rely on the target
speaker’s data during training, so it is considered flexible and
convenient in practice.

II. AVERAGE MODELING VC SYSTEM WITH I-VECTOR

Fig. 1 shows the Phonetic PosteriorGram (PPG)-based av-
erage modeling VC framework. PPG is a time-versus-class
vector representing the phonetic classes at frame level [24],
[31]–[33], which is derived from an automatic speech recog-
nition (ASR) system as the linguistic features to represent the
input speech. The average model learns to map PPG linguistic
features to Mel Cepstral Coefficients (MCCs). As it is trained
on multiple speakers and different languages, it represents an
average voice. The average model is conditioned on i-vector
input to project the average voice to a target speaker identity.

A. i-vector Based Speaker Embedding

i-vector is a compact representation for an utterance repre-
senting the speaker characteristics [27]. It is derived by a factor
analysis approach. In particular, GMM supervectors obtained
from some feature representation are projected into a low
dimensional space. It is done by creating a total variability
space that covers all sorts of variability like speaker, channel
and session information. This space is learned by expecta-
tion maximization (EM) algorithm using a large amount of
background data. The low dimensional representations also
carry channel/session information that are required to be com-
pensated by using techniques like linear discriminant analysis
(LDA). The final low dimensional representation captures the
speaker’s identity. This i-vector is used as a speaker embedding
for the average model.

B. Training Stage

Speech data from many speakers are first passed into the
i-vector extractor, ASR system and vocoder to extract the i-
vectors, PPGs and MCCs, respectively. Then, input linguistic
features can be formed by concatenating i-vectors with PPGs,
and MCCs are used as the output acoustic features. The

average model is trained to learn the transformation function
from input PPGs with i-vectors to output MCCs by minimizing
the mean square error between the original and predicted
MCCs via backpropagation.

C. Conversion Stage

Firstly, PPGs are extracted from the source speech using the
same ASR system; and the target i-vector is extracted from the
target speaker’s speech using the same i-vector extractor. Then,
PPGs and i-vector are concatenated and fed into the trained
network for acoustic feature (MCCs) generation. Finally, the
converted MCCs will be used to reconstruct the target wave-
form as in [30].

D. Limitation

The conversion performance of the i-vector based speaker
embedding may not be optimal for the reason that the i-vector
extractor is not jointly trained and optimized for VC task.

III. VOICE CONVERSION WITH A JOINTLY TRAINED
SPEAKER EMBEDDING NETWORK

Inspired by the study of speaker auxiliary network in
speaker extraction [34], we propose to employ a speaker
embedding network for speaker adaptation in the average
modeling VC system. Different from the i-vector framework
discussed in Section II, our proposed method does not rely on
the i-vector extractor to obtain the speaker embedding. Instead,
we utilize the acoustic features from the same training speaker
to learn a trainable speaker embedding. The primary VC
network is based on an average model, that is conditioned on
the speaker embedding from the speaker embedding network.

As shown in Fig. 2, the VC framework is similar to the one
discussed in Section II, while the proposed VC system does
not require the i-vector extractor. Rather than appending i-
vector as speaker ID to PPGs as input features, the speaker em-
bedding is jointly trained by presenting MCCs to the network.
The schematic diagram of the jointly trained network is shown
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in Fig. 3, and there are two blocks in the proposed network:
primary VC network and speaker embedding network.

In the primary VC network, PPGs and MCCs extracted
from the same utterances are used as paired input and output
features. In the speaker embedding network, we present the
MCCs extracted from the training speaker’s utterances as input
features. In particular, the utterances used for acoustic feature
(MCCs) extraction can be different from those used in the
primary VC network. By doing so, the speaker embedding
network can generally learn the speaker embedding from any
given speech data from a target speaker. Thus it is effective to
alleviate the mismatch problems caused by language difference
between source and target speech during testing time in

cross-lingual conversions. The speaker embedding vector is
then repeated and concatenated to the transformed linguistic
features in the hidden layer of the primary VC network to all
frames.

During conversion, we extract PPGs as input features from
the speech of a source speaker. While, we extract MCCs from
a target speaker’s speech to be used as speaker embedding
network input features. Both PPGs and MCCs will be passed
to their corresponding network, and the jointly trained model
will generate the converted MCCs in the target speaker’s voice.

IV. EXPERIMENTS

A. Database and Feature Extraction

In our experiment, VC was performed between English
and Mandarin speakers. All selected speech data is native
and monolingual, and the details are shown in TABLE I. For
training, 64 speakers were used including 32 female and 32
male speakers with 150 utterances from each speaker. The
other 12 utterances from each speaker in the training data were
used for validation. In total, we used 9,600 utterances to train
the average models. For testing, 20 non-overlapped utterances
from each of 8 target speakers were chosen.

For the i-vector based speaker embedding, the universal
background model (UBM) contained 502 speakers including
251 male and 251 female speakers from Switchboard II corpus.
In total, there were 1,872 utterances, and each utterance
was about 5 minutes. For the proposed speaker embedding
network, the network used the same training data as discussed
above, i.e., 9,600 utterances from 64 speakers, and each
utterance was few seconds.

The Kaldi toolkit [39] was used for ASR system training.
WORLD vocoder [40] was used for MCC feature extraction.
The network configurations and other feature details were all
the same as in [30].
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TABLE I
DETAILS OF DATA USED IN THE EXPERIMENTS.

Stage Database Data Selected Speaker

Training

VCTK [35] English 1,296 utterances 294, 297, 299, 300, 301, 303, 305, 306
8 male, 8 female 302, 311, 315, 316, 334, 345, 360, 363

CMU ARCTIC [36] English 972 utterances slt, clb, lnh
3 male, 3 female bdl, jmk, rms

VCC2016 [37] English 810 utterances SF1, SF2, SF3, TF1, TF2
5 male, 5 female SM1, SM2, TM1, TM2, TM3

Mandarin Library Mandarin 2,592 utterances
01F, 02F, 03F, 04F, 05F, 06F, 10F, 11F

16 male, 16 female
17F, 18F, 19F, 20F, 22F, 23F, 25F, 26F
07F, 08F, 09F, 12F, 13F, 35F, 39F, 42F
46F, 47F, 48F, 52F, 56F, 58F, 59F, 61F

Testing
VCC2018 [38] English 80 utterances TF1, TF2

2 male, 2 female TM1, TM2

Mandarin Library Mandarin 80 utterances 14F, 15F
2 male, 2 female 16M, 24M

We used mel frequency cepstral coefficient (MFCC) features
to derive the i-vectors. We used gender-independent UBM of
1024 mixture components and total variability matrix with
400 speaker factors. The 400-dimensional i-vectors obtained
from the framework were again reduced to 150 dimensions by
applying LDA.

B. Experimental Setups

We compared two systems, namely i-vector scheme, and
speaker embedding network, in cross-lingual voice conversion
experiments.

• iSE: We implemented a cross-lingual VC system with the
i-vector based Speaker Embedding (iSE) as the baseline.
As described in Section II, the model was trained with
Merlin toolkit [41]. The input feature dimension was
491 including 341-dimensional bilingual PPG and 150-
dimensional i-vector. Two BLSTM layers were used and
each layer had 512 nodes. The minibatch size, momen-
tum and learning rate were set to 20, 0.9 and 0.002,
respectively. The output acoustic feature dimension was
127, which consisted of MCCs (40-dim), log fundamental
frequency (F0) (1-dim), Aperiodicity (AP) (1-dim) and
their dynamic features, and voiced/unvoiced flag (1-dim).

• SEN: We employed the proposed jointly trained Speaker
Embedding Network (SEN) as discussed in Section III.
For the primary VC network, the input feature dimension
was 341, which only contained the bilingual PPG. Two
BLSTM layers were used and each layer had 512 hidden
units. For the speaker embedding network, the input
acoustic feature dimension was 127, which was same
with that of output acoustic features. Using the same
minibatch size of 20, another 20 utterances from from
the same speaker were fed into the speaker embedding
network. Two BLSTM layers were used and each layer
had 256 nodes. The feed-forward hidden layer with ReLU
activation function also had 256 nodes. Last, a linear layer
with 30 nodes was used with a mean pooling over all
frames to produce a 30-dimensional speaker embedding
vector. Other parameters and features were the same as
our baseline iSE system.

TABLE II
MCD RESULTS FOR INTRALINGUAL VOICE CONVERSION. ISE DENOTES
THE BASELINE VC SYSTEM WITH I-VECTOR, AND SEN INDICATES THE

PROPOSED JOINTLY TRAINED SPEAKER EMBEDDING NETWORK. M AND F
DENOTE THE FEMALE SPEAKER AND MALE SPEAKER RESPECTIVELY. THE

ARROW SHOWS THE CONVERSION DIRECTION.

Language Gender iSE SEN

English

M → M 5.88 5.76
F → F 6.53 6.29
F → M 6.54 6.48
M → F 6.87 6.69

Mandarin

M → M 5.91 5.77
F → F 6.81 6.68
F → M 6.73 6.60
M → F 7.47 7.21

During conversion, we directly copied APs from source
speech, while converted F0 by a global linear transformation
in log-scale [32], [42], [43]. The MCCs were obtained by
maximum likelihood parameter generation algorithm [44]. A
post-filtering technique was also employed [45].

C. Evaluations

Both objective and subjective evaluations were conducted
on the baseline and proposed systems. We covered all intra-
gender and inter-gender conversions among the test speakers
in two languages, and the average results will be reported
in each language. As we only have monolingual speech data
from all chosen speakers, the objective evaluation results will
be discussed only for intralingual VC. However, subjective
evaluations will focus on cross-lingual VC. The converted
speech samples are available from the demo link1.

1) Objective Evaluation: Mel-cepstral distortion (MCD)
was used to measure the spectral distance between the ground
truth and converted speech, which is defined as follows be-
tween two MCC frames,

MCD[dB] =
10

log10

√√√√2
D∑

d=1

(cd − cconvertedd )2 (1)

1https://vcsamples.github.io/APSIPA2019/
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where cd and cconvertedd are d-th dimension of the original and
converted MCCs, and D indicates the MCC dimension. The
lower value accounts for a smaller distortion.

The MCD results are presented in TABLE II. We observe
that the proposed SEN always outperforms the baseline iSE
with lower MCDs for all conversion experiments in two
languages, which indicates that our proposed SEN is more
effective than iSE in intralingual VC. Although our focus is
cross-lingual VC, the intralingual conversion results are also
meaningful to evaluate the system performance [46].

2) Subjective Evaluations: AB preference test was con-
ducted to assess speech quality, and XAB preference test was
also conducted to evaluate speaker similarity. 12 listeners were
invited to participate in all the tests. 20 samples were randomly
selected from 160 converted samples from each system. In
AB preference tests, the listeners were asked to compare the
quality and naturalness of the converted speech samples from
different systems, and select the better one. Fig. 4 shows the
speech quality test results, which suggests that our proposed
approach outperforms the baseline system, and the quality
improvement is more remarkable in English.

In XAB preference tests, X was the reference target
speaker’s speech, A and B were the randomly selected con-
verted samples from different systems. The listeners were
asked to chose the sample that was closer to the refer-
ence speaker’s voice. The speaker similarity test results are
presented in Fig. 5. It is observed that our proposed SEN
outperforms the i-vector system in both English and Mandarin,
and the difference is statistically significant in English.

Both objective and subjective results demonstrate the pro-
posed jointly trained speaker embedding network consistently
outperform the baseline VC system using i-vectors, which
confirms the effectiveness of our proposed approach in terms
of quality and similarity.

V. CONCLUSIONS

In this paper, we proposed a jointly trained speaker embed-
ding network by integrating a speaker embedding network to
the primary voice conversion network and optimizing it jointly
with the rest of the model. A many-to-many cross-lingual
voice conversion framework is implemented to validate the
effectiveness of our proposed technique. Experimental results
show that the proposed network can effectively improve the
conversion performance in terms of both speech quality and
speaker individuality compared to the average modeling voice
conversion system using i-vector.
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