
Approach using Transforming Structural Data into
Image for Detection of Malicious MS-DOC

Files based on Deep Learning Models
Shaojie Yang, Wenbo Chen*, Shanxi Li and Qingxiang Xu

Lanzhou University, Lanzhou, China
E-mail: {yangshj18,chenwb,lisx,xuqx}@lzu.edu.cn

Abstract—Malicious MS-DOC file has a long history in
cybersecurity and has rapid growth with tremendous appearance
of advanced persistent threat (APT) attacks. Due to its
obfuscation and complexities, regular detection methods are not
ideal, and the specific detection methods are limited, either. This
paper presents a new approach for malware detection of MS-
DOC files. Inspired by analysis of MS-DOC files and tremendous
success made by convolutional neural network (CNN) in the field
of feature identification, especially image identification, a new
approach including data extraction and conversion is designed to
identify MS-DOC malicious files and benign files. Based on three
CNN models, experiment results show that the accuracy rate of
detection for test dataset reaches 94.09%, and in simulated zero-
day malware detection experiment, the average accuracy rate
reaches 94.70%. The approach proves the feasibility of MS-DOC
malicious file detection based on convolutional neural network
and proposes a new idea to detect zero-day MS-DOC malware.

I. INTRODUCTION

The Word Binary File Format is a persistence format that
supports word processing tasks for content in documents and
document templates. These tasks include authoring and
manipulating text, images, tables, and the layout of pages, and
managing custom XML schemas that are associated with
document content. In this paper, we describe these files as MS-
DOC files or doc files.

In recent years, sending victims malicious doc files to invade
the operation system has become a common method, especially
in advanced persistent threat (APT) attacks. There are three
reasons why the doc files have become so popular in attack
activities. First, the malicious code embedded in the doc files
is widely used. Second, the doc file has many users and
complex structure. In addition, it is easy to embed an object in
the doc file without being discovered [1].

In the APT attack, hackers always use social engineering
techniques or malware, or combine both, so the doc file is an
ideal carrier. Besides, the fly always changes by recompiling
malware code and using encryption for obfuscation to avoid
detection, and complex structures of the doc file provides a
good condition for mutation [2]. Because of the wide-scale
operations of APT attacks, the MS-DOC malicious files are
becoming an agency for cybersecurity.

However, there’s no specific way to detect malicious doc-
format files. Most protection solutions have utilized the
traditional detection as their primary choice, which consists of
static analysis based on signature matching [3] and dynamic

behavior analysis based on the detection of sensitive API calls
[4]. These methods have an ideal rate on detecting known
malware. However, they also have limitation in detecting the
malware encrypted, disguised [5], or based on undiscovered
attack methods [6], which have been common in new attack
activities.

Recently, machine learning and deep learning has become a
research point; some researchers combine them with security
detection and get some positive results.

Yao Wang and his team have some research on the detection
of malicious JavaScript code. They adopted Stacked denoising
auto-encoder (SDAE) to extract high-level features from
JavaScript code and take logistic regression as a classifier to
distinguish between malicious and Benign JavaScript. The
experimental results indicated that this process could detect
malicious code with an accuracy of 95%, and the false positive
rate can be reduced to 4.2% [7].

Sitalakshmi et al. are committed to executable-detection
research. Firstly, they converted executable files into grayscale
maps with data visualization technique, then the maps was
classified with convolutional neural networks. After
classification, samples in the same class were reversed and
their API calls were extracted to make a series of similarity
mining. Finally, the data was utilized to train a support vector
machine model (SVM). The test result showed that the
accuaracy of identification would vary in different method, and
the highest accuracy could reach over 95% [8].

Wookhyun et al. proposed a new method to detect zero-day
flash malware. They extracted features from malicious samples
manually and constructed two dimensions matrix with the
features for each sample, and then the matrix was used to train
the CNN model. The result shows that with the increase of
training samples, the accuracy will develop, too and finally
remains above 97% [9].

Aviad Cohen et al. proposed a new structural feature
extraction methodology –SFEM, to detect unknown malicious
XML-based documents with machine learning algorithms.
They collected 830 malicious files and 16180 files to evaluate
SFEM. The result showed that SFEM had better performance
than the most top, leading anti-virus engine in detecting
malicious docx files, such as The-AVAST anti-virus engine
achieved a TPR of only 0.777, while SFEM can achieve 0.97.
What’s more, SFEM can also detect unknown XML-based
Office documents, which proved that detection approaches
based on machine learning have its own advantages (versus
signature-based approaches) [10].

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

28978-988-14768-7-6©2019 APSIPA APSIPA ASC 2019

In this paper, we proposed a new detection approach for MS-
DOC malicious files based on data visualization and deep
learning. We presented the following main contributions:

1) We gave an analysis of malicious doc files, mainly
focused on structures and suspicious features.

2) Then we provided a new approach to process doc files,
including data extraction and conversion.

3) After that, we applied three CNN deep learning models
to classify the samples and evaluate our method.

4) Finally, we prepared some simulated zero-day samples
and tested them with the models to evaluate the models’
capability of unknown malware detection.

II. FILE ANALYSIS

Embedding of malicious codes may cause the difference
between the malicious MS-DOC file and the benign one in a
number of respects, such as structure and components. So an
analysis of doc files is needed for identifying malicious files.

A. Analysis for macros virus

The MS-DOC file, like other OLE binary files, has clear
structure and composition. Table 1. presents structures of a
standard benign doc file and a macros virus file. Compared
with the normal structure, the malware structure has several
Macros streams, which might consist of VBA script. Since
many benign files also have VBA script to finish some
operations automatically, a more detailed analysis is needed.

We extracted the VBA macros code from the malicious
malware. As Fig. 1 reveals, the code includes some suspicious
sentences marked as red color, such as strange executable file
name and calls of sensitive APIs, all these features appear
usually in a malware. As a result, the sample could be judged
as a macros virus.

B. Analysis of other malware

Contrast to macros virus, other malware are more difficult to
analyze and detect as it has the same or similar structure with
the benigns. Yet, there are still some distinct features which
may help identify these files manually.

One of the features is massive unmeaningful characters,
which usually are filled in malware to trigger one or more
vulnerability or avoid detection from anti-virus solutions such
as junk instruction and encrypted code, like Fig. 2 shows.
However, some tricksters will generate lots of unmeaningful
files and fill with trash codes for fun, so it cannot be a definitive
evidence.

Another feature is still suspicious code. Like Fig. 3 shows,
which include sensitive API strings and suspicious executable
filenames. It may be significant for identifying malware.

However, the analysis also has some drawbacks. For
example, the suspicious codes may be hidden in massive
components and locating the features is a time-consuming
process. Furthermore, maybe known features detection is easy
for professional solutions, if the feature is encrypted, hidden or
changed, it might not work so well.

Deep learning is a new machine learning technique, which
shows a high accuracy in feature identification and image
classification. Based on the conclusion of file analysis, we
believe that it is efficient for MS-DOC file detection with deep
learning models.

III. DETECTION METHODOLOGY

A. Data conversion

Table. 1. Structure of MS-doc files

struct of benign doc files struct of macros virus
'\x01CompObj' '\x01CompObj'

 '\x05DocumentSummaryInformation' \x05DocumentSummaryInformation'

\x05SummaryInformation' \x05SummaryInformation'

'1Table' '1Table'

'Data' 'Data'

Macros/G9b4Gjelvo/\x01CompObj'

'Macros/G9b4Gjelvo/\x03VBFrame'

'Macros/G9b4Gjelvo/f'

'Macros/G9b4Gjelvo/o'

'Macros/PROJECT'

'Macros/PROJECTwm'

'Macros/VBA/FVXAnubdU4'

'Macros/VBA/G9b4Gjelvo'

Macros/VBA/ThisDocument'

'Macros/VBA/_VBA_PROJECT'

'Macros/VBA/dir'

'WordDocument' 'WordDocument'

Fig. 1. VBA macros from a malicious sample

(a)

(b)

Fig. 2. Unmeaningful characters (a) and encrypted strings (b)
from a malicious sample

…

Private Sub Docement_Open()

If ActiveDocument.Variables("wykYqM").Value <> "juryt" And Not gKelhjy("VmRemoteGuest.exe")

And Not gKelhjy("tee.exe") Then egsdDwwbNSzoBn

…

End Sub

Private Function gKelhjy(prfs As String) As Boolean

…

Set uSgjr = ugkFg.ExecQuery("Select * from Win32Process Where Name = '" & prfs & "'")

…

End Function

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

29

Considering general application of CNN in image
identification as well as the results of our predecessors
[11,12,13], converting the files into images is necessary. The
advantage of image conversion is that the deep learning model
has a more developed and productive application in image
classification.

Fig. 3 and Fig. 5 indicates that the files can be interpreted as
hex streams, and every two hex characters can be interpreted
as one 8-bit values. Thus, we can generate a pixel with the
value and finally generate an 8-bit scale gray image.

B. Convolutional neural networks

Convolutional neural network is a type of neural network
models which has a grid pattern like images and others. The
model gets inspiration from the organization of animal visual
cortex and is designed to automatically and adaptively learn
spatial hierarchies of features, from low-to-high level patterns
[14]. CNN models have developed rapidly from Le-Net5 [15]
to AlexNet [16] and VGG [17] with the tremendous promotion
of accuracy. Until now Convolutional neural networks have
had successful achievement in image classification.

A CNN can be considered as a series of repeated structures
that consist of a convolutional layer and pooling layer. In a
convolutional layer, the coordinates ݑ, in the feature map can
be written as ݑ,ሾሿ ൌ ݂ ቀ∑∑ ∑ ሺା௦ሻ,ሺା௧ሻሾሿݔ௦,௧ሾ,ሿݓ ܾሾሿିଵ௧ୀିଵ௦ୀ ቁ

where ݑሾሿ is the feature map, ݇ is the index of the filter, ݔሾሿ
is the previous feature map, ܿ is a channel, ݓሾ,ሿ is the weight,
and ܾሾሿ is the bias. The size of the filter is m× n and ݂ is an
activation function [18].

The function of the convolutional layer is doing convolution
computation to extract features. Each layer has some
convolution kernels. The input image will be converted into a
matrix and then be convolved with the convolution kernel at
the layer. The pooling layer is supposed as a feature filter to
reduce the dimension of data generated in the previous
convolution layer and ensure the main features.

In this work, Le-Net5 model is adopted, which structure
is shown in Fig. 4. The input layer is the gray image
converted from .doc samples with a size of 1024 × 1024.
C1 and C2 are convolution layers which have a kernel size
of 4 × 4 and 1 × 1, Moreover, a kernel quantity of 32 and
64. The output of the convolution layers are matrices which
have a dimension equals to kernel quantity. S1 and S2 are
pooling layers with the same kernel size of 4 × 4 . The
number of neurons in F1 layer is 1024 and 2 in F2 layer. The
output layer contains two neurons determined by two target
groups of benign and malicious samples.

In addition, we will also adopt AlexNet and VGG, which
are the improved CNN models, to test other CNN models’
capability in the detection of malicious doc-format files.

IV. EXPERIMENT AND RESULTS

A. Data collection

To validate the detection of our approach, we collected
various samples of malicious and benign OLE Microsoft Word
documents (*.doc) totaling 1796 unique documents as Table. 2
shows, which include 978 malicious files and 818 benign files.
The malicious files were gathered from VirusTotal, and benign
files were from Internet.

B. Data Processing

Firstly, the samples were simplified. Considering that “Table”
section and “Data” section are usually table and text streams,
they were cut and the rest generated a new sample. The
extraction will influence the accuracy of detection, which will
be solved in future works.

After that, each sample was converted into a hex stream and
then generated an 8-bit gray map which had a resolution of

(a)

(b)

Fig. 3. API calls (a) and suspicious code (b) from a malicious
sample

Fig. 4. Modified Lenet-5 structure.

Fig. 5. Images of malicious samples

Fig. 6. Images of benign samples

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

30

 1024 × 1024.The grayscale images of the extracted data are
shown in Fig. 5 and Fig. 6.

Finally, two new datasets were created. One part was used
for training and the other for the validation, the concrete
allocation is shown in Table. 2.

C. Model training and testing
The models were trained with the training dataset in different

epochs and the training accuracy are shown in Fig. 7.
To test models’ accuracy and Robustness, each model was

trained ten times and was tested with the validation dataset after
training to evaluate accuracy of the models. As Table. 4
presents, the accuracy of detecting samples all reached above
90%, and VGG got the highest single accuracy of 94.94% as
well as average accuracy of 94.09%.

D. Zero-day simulating detection
In this work, we collected eight new-type malicious samples.

After testing general samples, a new dataset consist of eight
new-type malicious samples and twelve benign samples was
tested with trained models, therefore we could simulate zero-
day malware detection and evaluate whether the models have
ability to identify unknown malware.

The test results of zero-day malware simulating detection are
shown in Table. 5. All detection accuracy of the three models
could reach above 85%, which indicated that all models have a
certain detection capability of unknown malicious doc-format
files. Besides, Alexnet reached an average accuracy of 94.70%,
which was much higher than other two models.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed a new detection method of
malicious doc-format files with CNN models. A method of data
visualization to convert samples into the image was adopted,

which could transform a file-detection problem into an image-
recognition problem. Three different models were employed,
and the test accuracy could reach 94.09%. In addition, some
unknown samples (which type were never trained and tested
before) were used as simulated zero-day malware to test the
models' detection capability of unknown or zero-day malicious
files; the results showed that the models could reach a highest
average accuracy of 94.70%.

The experiment confirmed the feasibility of applying deep
learning in the office malware detection and provided a new
proposal to detect zero-day and unknown MS-DOC malware.

The samples still have too many idle components for
malware detection, future work could focus on the promotion
of models and denoising of the inputs to improve the accuracy
as well as reduce the costs. Moreover, since VGG had the
highest accuracy in the detection of known samples while
Alexnet had the highest accuracy in the detection of unknown
samples, it is considerable to combine both in practice, which
could be another research point.

ACKNOWLEDGMENT

We would like to thank the High-Performance Computing
Center at Lanzhou University of Lanzhou, China, for
supporting this research. Many thanks also to VirusTotal for
granting us complimentary access to their samples.

Table. 2. Statics of dataset.

Fig. 7. Accuracy of the validation set with different models.

malicious benign
Training datasets 873 722 1595

Test datasets 105 96 201

Number of samples
Type of datasets Total

0 50 100 150 200 250
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Number of epochs

 LeNet
 AlexNet
 VGG

Table. 3. Accuracy of test dataset with different models.

Table. 4. Accuracy of zero-day simulating dataset with different
models.

Le-Net5 AlexNet VGG
1 92.50% 92.50% 93.38%
2 94.89% 93.50% 94.31%
3 92.67% 92.50% 94.64%
4 93.67% 93.00% 93.82%
5 91.44% 92.50% 93.40%
6 94.56% 94.50% 93.61%
7 92.89% 91.50% 94.24%
8 94.22% 92.00% 94.94%
9 92.78% 92.00% 93.75%

10 94.00% 93.00% 94.78%
Average 93.36% 92.70% 94.09%

AccuracyNum

Le-Net5 Alexnet VGG
1 84.00% 92.00% 84.49%
2 89.67% 95.00% 83.96%
3 90.33% 95.00% 83.96%
4 89.67% 94.00% 95.19%
5 89.33% 95.00% 83.96%
6 84.25% 96.00% 89.30%
7 89.33% 95.00% 83.96%
8 89.33% 93.00% 89.30%
9 89.58% 96.00% 83.96%

10 89.25% 96.00% 83.96%
Average 88.47% 94.70% 86.20%

Accuracy
Num

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

31

REFERENCES

[1] Gao, Y., & Qi, D. (2011, 10-13 July 2011). Analyze and detect
malicious code for compound document binary storage format.
Paper presented at the 2011 International Conference on Machine
Learning and Cybernetics.

[2] Tankard, C. (2011). Advanced Persistent threats and how to
monitor and deter them. Network Security, 2011(8), 16-19.
Retrieved from
http://www.sciencedirect.com/science/article/pii/S13534858117
00861. doi:10.1016/s1353-4858(11)70086-1

[3] Bayer, U., Moser, A., Kruegel, C., & Kirda, E. (2006). Dynamic
analysis of malicious code. Journal in Computer Virology, 2(1),
67-77.

[4] Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M. M., Lavoie,
Y., & Tawbi, N. (2001). Static detection of malicious code in
executable programs. Int. J. of Req. Eng, 2001(184-189), 79.

[5] Bilge, L., & Dumitraş, T. (2012). Before we knew it: an empirical
study of zero-day attacks in the real world. Paper presented at the
Proceedings of the 2012 ACM conference on Computer and
communications security.

[6] Rad, B. B., Masrom, M., & Ibrahim, S. (2012). Camouflage in
malware: from encryption to metamorphism. International
Journal of Computer Science and Network Security, 12(8), 74-83.

[7] Wang, Y., Cai, W. D., & Wei, P. C. (2016). A deep learning
approach for detecting malicious JavaScript code. Security and
Communication Networks, 9(11), 1520-1534. Retrieved from
<Go to ISI>://WOS:000379053800021. doi:10.1002/sec.1441

[8] Venkatraman, S., & Alazab, M. (2018). Use of Data Visualisation
for Zero-Day Malware Detection. Security and Communication
Networks, 2018, 13. Retrieved from <Go to
ISI>://WOS:000453813700001. doi:Unsp 1728303
10.1155/2018/1728303

[9] Jung, W., Kim, S., & Choi, S. (2015). Poster: deep learning for
zero-day flash malware detection. Paper presented at the 36th
IEEE symposium on security and privacy.

[10] Cohen, A., Nissim, N., Rokach, L., & Elovici, Y. (2016). SFEM:
Structural feature extraction methodology for the detection of
malicious office documents using machine learning methods.
Expert Systems with Applications, 63, 324-343. Retrieved from
<Go to ISI>://WOS:000382273700026.
doi:10.1016/j.eswa.2016.07.010

[11] Kancherla, K., & Mukkamala, S. (2013). Image visualization
based malware detection. Paper presented at the 2013 IEEE
Symposium on Computational Intelligence in Cyber Security
(CICS).

[12] Kim, J. Y., Bu, S. J., & Cho, S. B. (2018). Zero-day malware
detection using transferred generative adversarial networks based
on deep autoencoders. Information Sciences, 460, 83-102.
Retrieved from <Go to ISI>://WOS:000441494000006.
doi:10.1016/j.ins.2018.04.092

[13] Makandar, A., & Patrot, A. (2015). Malware analysis and
classification using Artificial Neural Network. Paper presented at
the 2015 International conference on trends in automation,
communications and computing technology (I-TACT-15).

[14] Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018).
Convolutional neural networks: an overview and application in
radiology. Insights Imaging, 9(4), 611-629. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/29934920.
doi:10.1007/s13244-018-0639-9

[15] Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11), 2278-2324. Retrieved from

<Go to ISI>://WOS:000076557300010. doi:Doi
10.1109/5.726791

[16] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Paper
presented at the Advances in neural information processing
systems.

[17] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

[18] Kasugai, T., Tsuzuki, Y., Sawada, K., Hashimoto, K., Oura, K.,
Nankaku, Y., & Tokuda, K. (2018). Image Recognition Based on
Convolutional Neural Networks Using Features Generated from
Separable Lattice Hidden Markov Models. Paper presented at the
2018 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC).

Proceedings of APSIPA Annual Summit and Conference 2019 18-21 November 2019, Lanzhou, China

32

