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Abstract—Malicious MS-DOC file has a long history in 
cybersecurity and has rapid growth with tremendous appearance 
of advanced persistent threat (APT) attacks. Due to its 
obfuscation and complexities, regular detection methods are not 
ideal, and the specific detection methods are limited, either. This 
paper presents a new approach for malware detection of MS-
DOC files. Inspired by analysis of MS-DOC files and tremendous 
success made by convolutional neural network (CNN) in the field 
of feature identification, especially image identification, a new 
approach including data extraction and conversion is designed to 
identify MS-DOC malicious files and benign files. Based on three 
CNN models, experiment results show that the accuracy rate of 
detection for test dataset reaches 94.09%, and in simulated zero-
day malware detection experiment, the average accuracy rate 
reaches 94.70%. The approach proves the feasibility of MS-DOC 
malicious file detection based on convolutional neural network 
and proposes a new idea to detect zero-day MS-DOC malware. 

I. INTRODUCTION 

The Word Binary File Format is a persistence format that 
supports word processing tasks for content in documents and 
document templates. These tasks include authoring and 
manipulating text, images, tables, and the layout of pages, and 
managing custom XML schemas that are associated with 
document content. In this paper, we describe these files as MS-
DOC files or doc files. 

In recent years, sending victims malicious doc files to invade 
the operation system has become a common method, especially 
in advanced persistent threat (APT) attacks. There are three 
reasons why the doc files have become so popular in attack 
activities. First, the malicious code embedded in the doc files 
is widely used. Second, the doc file has many users and 
complex structure. In addition, it is easy to embed an object in 
the doc file without being discovered [1]. 

In the APT attack, hackers always use social engineering 
techniques or malware, or combine both, so the doc file is an 
ideal carrier. Besides, the fly always changes by recompiling 
malware code and using encryption for obfuscation to avoid 
detection, and complex structures of the doc file provides a 
good condition for mutation [2]. Because of the wide-scale 
operations of APT attacks, the MS-DOC malicious files are 
becoming an agency for cybersecurity. 

However, there’s no specific way to detect malicious doc-
format files. Most protection solutions have utilized the 
traditional detection as their primary choice, which consists of 
static analysis based on signature matching [3] and dynamic 

behavior analysis based on the detection of sensitive API calls 
[4]. These methods have an ideal rate on detecting known 
malware. However, they also have limitation in detecting the 
malware encrypted, disguised [5], or based on undiscovered 
attack methods [6], which have been common in new attack 
activities. 

Recently, machine learning and deep learning has become a 
research point; some researchers combine them with security 
detection and get some positive results. 

Yao Wang and his team have some research on the detection 
of malicious JavaScript code. They adopted Stacked denoising 
auto-encoder (SDAE) to extract high-level features from 
JavaScript code and take logistic regression as a classifier to 
distinguish between malicious and Benign JavaScript. The 
experimental results indicated that this process could detect 
malicious code with an accuracy of 95%, and the false positive 
rate can be reduced to 4.2% [7]. 

Sitalakshmi et al. are committed to executable-detection 
research. Firstly, they converted executable files into grayscale 
maps with data visualization technique, then the maps was 
classified with convolutional neural networks. After 
classification, samples in the same class were reversed and 
their API calls were extracted to make a series of similarity 
mining. Finally, the data was utilized to train a support vector 
machine model (SVM). The test result showed that the 
accuaracy of identification would vary in different method, and 
the highest accuracy could reach over 95% [8].  

Wookhyun et al.  proposed a new method to detect zero-day 
flash malware. They extracted features from malicious samples 
manually and constructed two dimensions matrix with the 
features for each sample, and then the matrix was used to train 
the CNN model. The result shows that with the increase of 
training samples, the accuracy will develop, too and finally 
remains above 97% [9]. 

Aviad Cohen et al. proposed a new structural feature 
extraction methodology –SFEM, to detect unknown malicious 
XML-based documents with machine learning algorithms. 
They collected 830 malicious files and 16180 files to evaluate 
SFEM. The result showed that SFEM had better performance 
than the most top, leading anti-virus engine in detecting 
malicious docx files, such as The-AVAST anti-virus engine 
achieved a TPR of only 0.777, while SFEM can achieve 0.97. 
What’s more, SFEM can also detect unknown XML-based 
Office documents, which proved that detection approaches 
based on machine learning have its own advantages (versus 
signature-based approaches) [10].  
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In this paper, we proposed a new detection approach for MS-
DOC malicious files based on data visualization and deep 
learning. We presented the following main contributions:  

1) We gave an analysis of malicious doc files, mainly 
focused on structures and suspicious features. 

2) Then we provided a new approach to process doc files, 
including data extraction and conversion.  

3) After that, we applied three CNN deep learning models 
to classify the samples and evaluate our method. 

4) Finally, we prepared some simulated zero-day samples 
and tested them with the models to evaluate the models’ 
capability of unknown malware detection. 

II. FILE ANALYSIS 

Embedding of malicious codes may cause the difference 
between the malicious MS-DOC file and the benign one in a 
number of respects, such as structure and components. So an 
analysis of doc files is needed for identifying malicious files. 

A. Analysis for macros virus 

The MS-DOC file, like other OLE binary files, has clear 
structure and composition. Table 1. presents structures of a 
standard benign doc file and a macros virus file. Compared 
with the normal structure, the malware structure has several 
Macros streams, which might consist of VBA script. Since 
many benign files also have VBA script to finish some 
operations automatically, a more detailed analysis is needed. 

We extracted the VBA macros code from the malicious 
malware. As Fig. 1 reveals, the code includes some suspicious 
sentences marked as red color, such as strange executable file 
name and calls of sensitive APIs, all these features appear 
usually in a malware. As a result, the sample could be judged 
as a macros virus. 

B. Analysis of other malware 

Contrast to macros virus, other malware are more difficult to 
analyze and detect as it has the same or similar structure with 
the benigns. Yet, there are still some distinct features which 
may help identify these files manually. 

One of the features is massive unmeaningful characters, 
which usually are filled in malware to trigger one or more 
vulnerability or avoid detection from anti-virus solutions such 
as junk instruction and encrypted code, like Fig. 2 shows. 
However, some tricksters will generate lots of unmeaningful 
files and fill with trash codes for fun, so it cannot be a definitive 
evidence. 

Another feature is still suspicious code. Like Fig. 3 shows, 
which include sensitive API strings and suspicious executable 
filenames. It may be significant for identifying malware. 

However, the analysis also has some drawbacks. For 
example, the suspicious codes may be hidden in massive 
components and locating the features is a time-consuming 
process. Furthermore, maybe known features detection is easy 
for professional solutions, if the feature is encrypted, hidden or 
changed, it might not work so well. 

Deep learning is a new machine learning technique, which 
shows a high accuracy in feature identification and image 
classification. Based on the conclusion of file analysis, we 
believe that it is efficient for MS-DOC file detection with deep 
learning models. 

III. DETECTION METHODOLOGY 

A. Data conversion 

 

Table. 1.   Structure of MS-doc files 

struct of  benign doc files struct of  macros virus
'\x01CompObj' '\x01CompObj'

 '\x05DocumentSummaryInformation' \x05DocumentSummaryInformation'

\x05SummaryInformation' \x05SummaryInformation'

'1Table' '1Table'

'Data' 'Data'

Macros/G9b4Gjelvo/\x01CompObj'

'Macros/G9b4Gjelvo/\x03VBFrame'

'Macros/G9b4Gjelvo/f'

'Macros/G9b4Gjelvo/o'

'Macros/PROJECT'

'Macros/PROJECTwm'

'Macros/VBA/FVXAnubdU4'

'Macros/VBA/G9b4Gjelvo'

Macros/VBA/ThisDocument'

'Macros/VBA/_VBA_PROJECT'

'Macros/VBA/dir'

'WordDocument' 'WordDocument'

 

Fig. 1.   VBA macros from a malicious sample 

 
(a)  

 
(b)  

Fig. 2.   Unmeaningful characters (a) and encrypted strings (b)    
from a malicious sample 

… 

 

Private Sub Docement_Open() 

If ActiveDocument.Variables("wykYqM").Value <> "juryt" And Not gKelhjy("VmRemoteGuest.exe")

And Not gKelhjy("tee.exe") Then egsdDwwbNSzoBn 

… 

End Sub 

 

Private Function gKelhjy(prfs As String) As Boolean 

… 

Set uSgjr = ugkFg.ExecQuery("Select * from Win32Process Where Name = '" & prfs & "'") 

… 

End Function 
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Considering general application of CNN in image 
identification as well as the results of our predecessors 
[11,12,13], converting the files into images is necessary. The 
advantage of image conversion is that the deep learning model 
has a more developed and productive application in image 
classification. 

Fig. 3 and Fig. 5 indicates that the files can be interpreted as 
hex streams, and every two hex characters can be interpreted 
as one 8-bit values. Thus, we can generate a pixel with the 
value and finally generate an 8-bit scale gray image.  

B. Convolutional neural networks 

Convolutional neural network is a type of neural network 
models which has a grid pattern like images and others. The 
model gets inspiration from the organization of animal visual 
cortex and is designed to automatically and adaptively learn 
spatial hierarchies of features, from low-to-high level patterns 
[14]. CNN models have developed rapidly from Le-Net5 [15] 
to AlexNet [16] and VGG [17] with the tremendous promotion 
of accuracy. Until now Convolutional neural networks have 
had successful achievement in image classification. 

A CNN can be considered as a series of repeated structures 
that consist of a convolutional layer and pooling layer. In a 
convolutional layer, the coordinates ݑ, in the feature map can 
be written as ݑ,ሾሿ ൌ ݂ ቀ∑∑ ∑ ሺା௦ሻ,ሺା௧ሻሾሿݔ௦,௧ሾ,ሿݓ  ܾሾሿିଵ௧ୀିଵ௦ୀ ቁ  

where ݑሾሿ is the feature map, ݇ is the index of the filter,  ݔሾሿ 
is the previous feature map, ܿ is a channel, ݓሾ,ሿ is the weight, 
and ܾሾሿ is the bias. The size of the filter is m× n and ݂ is an 
activation function [18].  

The function of the convolutional layer is doing convolution  
computation to extract features. Each layer has some 
convolution kernels. The input image will be converted into a 
matrix and then be convolved with the convolution kernel at 
the layer. The pooling layer is supposed as a feature filter to 
reduce the dimension of data generated in the previous 
convolution layer and ensure the main features. 

In this work, Le-Net5 model is adopted, which structure 
is shown in Fig. 4. The input layer is the gray image 
converted from .doc samples with a size of 1024 × 1024. 
C1 and C2 are convolution layers which have a kernel size 
of  4 × 4 and  1 × 1, Moreover, a kernel quantity of 32 and 
64. The output of the convolution layers are matrices which 
have a dimension equals to kernel quantity. S1 and S2 are 
pooling layers with the same kernel size of 4 × 4 . The 
number of neurons in F1 layer is 1024 and 2 in F2 layer. The 
output layer contains two neurons determined by two target 
groups of benign and malicious samples. 

In addition, we will also adopt AlexNet and VGG, which 
are the improved CNN models, to test other CNN models’ 
capability in the detection of malicious doc-format files. 

IV. EXPERIMENT AND RESULTS 

A. Data collection 

To validate the detection of our approach, we collected 
various samples of malicious and benign OLE Microsoft Word 
documents (*.doc) totaling 1796 unique documents as Table. 2 
shows, which include 978 malicious files and 818 benign files. 
The malicious files were gathered from VirusTotal, and benign 
files were from Internet. 

B. Data Processing 

Firstly, the samples were simplified. Considering that “Table” 
section and “Data” section are usually table and text streams, 
they were cut and the rest generated a new sample. The 
extraction will influence the accuracy of detection, which will 
be solved in future works. 

After that, each sample was converted into a hex stream and 
then  generated  an  8-bit  gray map  which had a resolution of 

 
(a)  

      
(b)  

Fig. 3.   API calls (a) and suspicious code (b) from a malicious 
sample 

 

Fig. 4.   Modified Lenet-5 structure. 

   

Fig. 5.  Images of malicious samples 

   

Fig. 6.   Images of benign samples 
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 1024 × 1024.The grayscale images of the extracted data are 
shown in Fig. 5 and Fig. 6. 

Finally, two new datasets were created. One part was used 
for training and the other for the validation, the concrete 
allocation is shown in Table. 2.  

C. Model training and testing 
The models were trained with the training dataset in different 

epochs and the training accuracy are shown in Fig. 7.  
To test models’ accuracy and Robustness, each model was 

trained ten times and was tested with the validation dataset after 
training to evaluate accuracy of the models. As Table. 4 
presents, the accuracy of detecting samples all reached above 
90%, and VGG got the highest single accuracy of 94.94% as 
well as average accuracy of 94.09%. 

D. Zero-day simulating detection 
In this work, we collected eight new-type malicious samples. 

After testing general samples, a new dataset consist of eight 
new-type malicious samples and twelve benign samples was 
tested with trained models, therefore we could simulate zero-
day malware detection and evaluate whether the models have 
ability to identify unknown malware. 

The test results of zero-day malware simulating detection are 
shown in Table. 5. All detection accuracy of the three models 
could reach above 85%, which indicated that all models have a 
certain detection capability of unknown malicious doc-format 
files. Besides, Alexnet reached an average accuracy of 94.70%, 
which was much higher than other two models. 

V. CONCLUSION AND DISCUSSION 

In this paper, we proposed a new detection method of 
malicious doc-format files with CNN models. A method of data 
visualization to convert samples into the image was adopted, 

which could transform a file-detection problem into an image-
recognition problem. Three different models were employed,  
and the test accuracy could reach 94.09%. In addition, some 
unknown samples (which type were never trained and tested 
before) were used as simulated zero-day malware to test the 
models' detection capability of unknown or zero-day malicious 
files; the results showed that the models could reach a highest 
average accuracy of 94.70%.  

The experiment confirmed the feasibility of applying deep 
learning in the office malware detection and provided a new 
proposal to detect zero-day and unknown MS-DOC malware. 

The samples still have too many idle components for 
malware detection, future work could focus on the promotion 
of models and denoising of the inputs to improve the accuracy 
as well as reduce the costs. Moreover, since VGG had the 
highest accuracy in the detection of known samples while 
Alexnet had the highest accuracy in the detection of unknown 
samples, it is considerable to combine both in practice, which 
could be another research point.  
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Table. 2.   Statics of dataset. 

 

Fig. 7.   Accuracy of the validation set with different models. 

malicious benign 
Training datasets 873 722 1595

Test datasets 105 96 201

Number of samples
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Table. 3.   Accuracy of test dataset with different models. 

 

Table. 4.   Accuracy of zero-day simulating dataset with different 
models. 

Le-Net5 AlexNet VGG
1 92.50% 92.50% 93.38%
2 94.89% 93.50% 94.31%
3 92.67% 92.50% 94.64%
4 93.67% 93.00% 93.82%
5 91.44% 92.50% 93.40%
6 94.56% 94.50% 93.61%
7 92.89% 91.50% 94.24%
8 94.22% 92.00% 94.94%
9 92.78% 92.00% 93.75%

10 94.00% 93.00% 94.78%
Average 93.36% 92.70% 94.09%

AccuracyNum

Le-Net5 Alexnet VGG
1 84.00% 92.00% 84.49%
2 89.67% 95.00% 83.96%
3 90.33% 95.00% 83.96%
4 89.67% 94.00% 95.19%
5 89.33% 95.00% 83.96%
6 84.25% 96.00% 89.30%
7 89.33% 95.00% 83.96%
8 89.33% 93.00% 89.30%
9 89.58% 96.00% 83.96%

10 89.25% 96.00% 83.96%
Average 88.47% 94.70% 86.20%

Accuracy
Num
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