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Abstract—In this work we propose a novel and generic scheme
for retrieval of motion capture (MoCap) data given a video
query. We reconstruct skeleton animations from video clips
by a convolutional neural network for 3-dimensional human
pose estimation to narrow the gap between videos and MoCap
data. A statistical motion signature is computed to extract both
morphological and kinematic characteristics from the skeleton
animations and the MoCap sequences. This as well ensures
that the proposed scheme works on MoCap data with arbitrary
skeleton structures. The retrieval is achieved by computing and
sorting the distances between the motion signature of the query
and those of the MoCap sequences which are pre-computed and
stored in the MoCap database. For experimental evaluation, we
respectively record a video dataset and capture a MoCap dataset
with different performers, and conduct video-based MoCap
data retrieval on them. Experimental results demonstrate the
effectiveness of the proposed scheme.

I. INTRODUCTION

Three-dimensional (3D) human animations are more and
more widely used in virtual and augmented reality, social net-
working or video processing. A common application scenario
is that a user upload a selfie video of a certain action and
the system generates a 3D skeleton animation corresponding
to the video. One method to solve the problem is estimating
3D pose from each frame and concatenating all the poses into
a skeleton animation. However, the quality of the animation
is limited by the performance of the estimating algorithm,
the frame rate of the video and even the expertise of the
actor/actress. A complete pre-built motion capture (MoCap)
database which provides high frame rate, high precision and
professionally performed 3D skeleton animation [1] to model
the motion can meet the demand of the application scenario.
Therefore, an effective and efficient retrieval method to find
the most similar MoCap sequence in the database to the video
is an effective way to achieve the application task.

MoCap techniques have been used to acquire realistic
motion sequences since the late 1970s for computer animation
and many other purposes [2]. Due to the complex procedure
for capturing [3], building a complete MoCap database before-
hand is often necessary to practical applications. The existing
MoCap databases often use text labels to classify different
kinds of MoCap sequences, but text labels are simply a rough
classification and are difficult to describe the details of each
MoCap sequence. Hence, many content-based MoCap data
retrieval methods have been proposed in recent years. Most
of the methods use a MoCap sequence as a query, (e.g., [4]),
and the query has the same skeleton structure as the MoCap
sequences in the database. The similarity is measured by the

features extracted from the joints’ configurations. Only a few
methods focus on other forms of query, such as hand-drawn
sketches (e.g., [5], [6]), Kinect-sensed motions (e.g., [7], [8])
and video clips (e.g., [9], [10]). This is primarily because
of the representational gap between the MoCap sequences
and other forms of motion data. Although good performance
has been achieved using MoCap sequences as queries, it is
often desirable to use other forms of query that may be easily
acquired in a more natural way, one of which is monocular
video.

In this work, we propose a generic and easy-to-use scheme
for MoCap data retrieval. With the proposed scheme, the user
simply acts the motion in front of a video camera, and the
proposed scheme automatically retrieves sequences from the
MoCap database containing similar motion to the query video.
To the best of our knowledge, only few works [9], [10] on
video-interfaced MoCap data retrieval have been published.
They usually project 3D geometries to 2D planes and use
projected 2D images for motion matching, with inevitable loss
of information. Compared with them, the proposed scheme
distinguishes in that it reconstructs truly 3D motions from 2D
videos, characterizes 3D motions using an effective generic
statistical descriptor, and matches motions based on the sim-
ilarity of their descriptors, all of which contribute to the
outstanding performance of the proposed scheme.

II. RELATED WORK

In recent years, both human pose estimation and MoCap
data retrieval have been considerably studied. In this section,
we discuss related works on the two topics respectively.

A. 3D Pose Estimation

In order to reconstruct an accurate skeleton animation, it is
crucial to get an precise estimation of the 3D human pose in
each frame.

The two-dimensional (2D) pose estimation has been studied
for years and the experiment results are remarkably accurate.
A lot of research estimates corresponding 3D poses on the
basis of the state-of-the-art 2D pose estimations [11], [12].
Zhou et al. [13], [14] use a CNN to extract 2D heatmaps
from 2D poses to reconstruct a 3D pose sequence from a
video clip. There are methods [15], [16], [17] that develop
neural networks to find plausible 3D poses from estimated 2D
poses. There are also methods [18], [19], [20] that estimate
a series of statistical parameters of a 3D human model from
2D images directly. They project different features to a plane
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which enable the algorithms to be trained on a database with
only 2D ground truth. Although the algorithms achieve decent
results, the disadvantages of the schemes are obvious. The
reconstruction from 2D to 3D is more like a statistical process
and is not supported by any image processing theory. The
accuracy of the estimated results are influenced by both 2D
and 3D steps, and the latter one brings ambiguity to the scheme
because of lacking of the depth information.

Another class of methods adopts the strategy to directly
learn the 3D poses from monocular images [21], [22], [23].
Li and Chan [24] use a multi-task framework jointly trains
pose regression and body part detectors. Tekin et al. [25] train
an overcomplete auto-encoder to learn a high-dimensional
latent pose representation and account for joint dependencies.
These methods are usually trained on fully annotated datasets,
which restrict the effectiveness of them on large-scale 2D pose
datasets.

Methods [22], [26], [27], [28] have also been proposed
to predict 3D poses from images in the wild. Mehta et
al. [22] adopt a transfer learning method and Mehta et al. [26]
use kinematic skeleton fitting to achieve real-time 3D pose
estimation. Zhou et al. [27] propose an end-to-end learning
method. The mothed uses mixed 2D and 3D labels in a unified
CNN and realize weakly-supervised transfer learning. Yang
et al. [28] is a complementary to [27] by introducing an
adversarial learning framework.

B. MoCap Data Retrieval

Some earlier algorithms (e.g., [29], [30], [31]) directly
compute the difference of 3D coordinates or generalized coor-
dinates of the joints to make comparison of postures in motion
sequences. Wang and Yeh [32] compute the differences of a
set of joint coordinates between two martial art sequences and
perform weighted accumulative addition operation to acquire
the distance of the two. So and Baciu [33] calculate the
change of directions of corresponding body parts between
key postures. Miura et al. [34] investigate several kinematic
parameters of the joints and present an effective parameter
combination.

A series of methods use a hierarchical structure to analyse
movement of different human body parts. Liu et al. [35]
propose the searching of MoCap data with a motion index
tree. Joint nodes of the body are hierarchically divided into 5
levels from the root (pelvis) to the limbs and head. Key frames
of a motion are extracted to build the hierarchical motion index
tree of clusters of motions. For a given query, comparisons are
made in a hierarchical manner and a comparison between the
input motion and motions in the closest leaf cluster finally
completes the retrieval. Deng et al. [36] divide human body
instead of joint nodes into hierarchical meaningful parts. Then
each motion is segmented into 18 postures and an adaptive
K-means algorithm is performed on each part of the body
separately to build pattern index lists for each motion. An
extended Knuth-Morris-Pratt (KMP) string match method is
used for matching.

Some research extracts mathematical features from the
movement of the joints. Tang et al. [37] calculate the joint
relative distances of any pair of the joints and its symmetric
pair and average the distances of each pair in a whole motion
sequence with a Boolean characteristic. The weighted averages
form a feature vector. Tang and Leung [38] calculate the
variance of joint relative distance, which in part reflects
motions of joints, to identify the similarity of MoCap data.
They construct feature vectors of motion samples and use a
linear regression model to get an optimal subset. This kind
of single feature description can not completely describe the
motion because they neglect the influence of some factors,
such as joint rotation and model translation.

Most of the existing MoCap retrieval algorithms focus
on the data with the same skeleton structure except Lv et
al. [39]. They compute statistical motion signatures to extract
morphological and kinematic characteristics of heterogeneous
MoCap sequences.

To the best of our knowledge, only few works [9], [10]
implement video-based MoCap data retrieval. Both works ren-
der a MoCap sequence with a roughly approximate “ball-and-
cylinder” model. In this way, the MoCap sequence is projected
to a group of 2D images with different view directions. Then
they adopt some techniques for content-based video retrieval
to complete the motion retrieval task. Although the algorithms
have achieved good retrieval performance, the procedure of
rendering is just an approximation with inevitable loss of
information, and the multi-view rendering is time-consuming.

III. METHOD

A. Overview

In this work we propose a novel scheme for generic video-
based MoCap data retrieval. We compute offline the motion
signature [39] of each MoCap sequence in the database and
store it with the raw MoCap sequence. For a video clip as
a given query, we firstly compute the bounding box of the
human in the video clip, then we adopt the state-of-the-art
architecture [27] to reconstruct the skeleton animation from it.
We compute the motion signature of the reconstructed skeleton
animation and compare it with all those in the database. A
list of MoCap sequences are returned as the result, which are
ordered according to their similarities to the query in motion
signature, from the highest to the lowest.

The flowchart of the proposed scheme is shown in Fig. 1.
Three key components of the flowchart include: 1) recon-
structing skeleton animation from the video clip, 2) computing
motion signatures, and 3) measuring the distance between
different signatures. Details of them are presented in the
following sub-sections.

B. Skeleton animation reconstruction

In order to make the videos and the MoCap sequences
comparable, a skeleton animation is reconstructed from each
video clip which provides a series of body joints positions
over time.
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Fig. 1. Flowchart of the proposed method. We reconstruct a skeleton animation from an input video clip. We compute a motion signature for the reconstructed
skeleton animation and any MoCap sequence in the database. A subset of the MoCap sequences whose motion signatures are the closest to the querys is
returned as the result.

We use a pre-trained Histogram of Oriented Gradient (HOG)
+ Linear Support Vector Machine (LSVM) model, which is
based on the research of Dalal and Triggs [40], to detect human
body in the video. Non-maximum suppression is adopted to
ensure that only one bounding box is computed in each frame.

The procedure of the reconstruction can be viewed as a 3D
pose estimator. A state-of-the-art architecture [27] is adopted
to estimate 3D human pose of each frame in a video clip.
The architecture includes a 2D pose estimation module and
a depth regression module. The 2D pose estimation is a
stacked hourglass network [41] in which a repeated bottom-
up, top-down structure with intermediate supervision is used to
improve the performance. The output of the network is J heat-
maps. The peak location of the 2D probability distribution in
each map represents a human joint, and J is the number of the
joints to be estimated. The depth regression module combines
the heat-maps and the intermediate feature representations
generated by the 2D module as the input. Unlike [15], [16],
[17] which use 2D pose coordinates as the only input, this kind
of multi-level input provides more information for 3D pose
recovery and avoid the inherent ambiguity to a certain extent.
A set of residual modules is used to compute a J × 1 vector
as the output which denote the depth of the joints. Besides,
weakly supervised learning of the depth regression module on
images in the wild is achieved by a 3D geometric constraint
induced loss. More detailed information may be found in the
reference [27].

In the reconstruction stage, the absolute translation of the
subject in video clips has been lost. Therefore, we translate
the coordinate origin to the root joint in each frame of
the reconstructed animations and the MoCap sequences for
consistency.

C. Motion Signature

For the purpose of enhancing the flexibility and the gen-
erality of the proposed retrieval scheme, we do not restrict
the morphological structure of the both kinds of motion se-
quences, the reconstructed skeleton animations and the MoCap

sequences. Due to the diversity of the MoCap systems, the
storage form of the data may be heterogeneous. A part of the
data is stored as skeleton animations, and the other part is
stored in the coordinates form of the capture markers. Even
in the same storage form, the skeletal structure of skeleton
animations or the sticking method of the markers may continue
to increase the diversity. Most of the previously published
algorithms avoid solving the heterogeneous problem because
they utilize a priori knowledge of a skeletal structure that is
consistently defined for all the MoCap sequences in a database.
In this work, we adopt a statistical motion signature, which
is proposed by Lv et al. [39], to extract features from the
trajectories of the joints in the 3D Euclidean space without
any assumption on the subject’s morphological structure.

The motion signature used in this work describes both the
morphological and the kinematic characteristics of a motion
sequence. We first build a minimal motion spanning tree
(MMST) of the joints that extracts the high-level morpho-
logical and kinematic characteristics from the motion. With
the help of this MMST, then we extract low-level kinematic
characteristics between separate joint pairs. A motion signature
which describes a motion sequence consists of both high-level
and low-level characteristics.

1) Minimal Motion Spanning Tree: We hope to connect
the joints in a automatical way to resemble the morphological
structure, which is similar to the a priori knowledge of
the skeletal structure, and also reflects the overall kinematic
characteristics of the motion. Specifically, a complete motion
graph of the joints is built where each node corresponds to
a joint, and each edge is weighted by the standard deviation
of the spatial distance between two joints labeled over all the
sequence. A sub-graph is the extracted from the complete map,
which is explained as below. It is noteworthy that the nodes
in the motion graph do not specify geometric attributes, and
the motion graph is independent of the view.

In order to make the extracted sub-graph reflect the mor-
phological structure of the subjects, the joints attached to
the same rigid segment (for example, the skeleton in the
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Fig. 2. Instantiated MMST examples for the (a) jump, (b) goose-step motions
for joint based MoCap data, (c) jump and (d) squat motions for marker based
MoCap data. The edge weights are ignored in the figure and the nodes in
each MMST are positioned by the geometry of the subject in a certain frame.

human skeleton) are kept connected. Joints on the same bone
usually show less relative motion than those on different
ones. Therefore, a minimal spanning tree is extracted from
the motion graph, called MMST. The MMST also reflects the
overall kinematic characteristics of motion sequence, because
it roughly represents the configuration of kinematic correla-
tion between joints, i.e., each highly correlated joint pair is
connected with one edge, while the less correlated joint pair
is not.

It is noteworthy that the MMST is established to represent
the high-level morphological and kinematic characteristics of
the motion subject through the joint connection rather than the
accurate morphological structure. When the skeleton structure
is the same, MMSTS can differentiate movement to some ex-
tent. Given that, even if a skeletal structure has been provided
with the original motion sequence, it won’t be used as the basis
of the motion description since the skeletal structure itself is
not motion-discriminative and, further, semantic information
about the joints may be lacking in the raw data.

In Fig. 2, we show exemplar MMSTs for motion sequences.
For the convenience of illustration, the edge weights are
ignored and the nodes in each MMST are positioned by the
geometry of the subject in a certain frame (note that we
do not utilize any geometric attributes in original data). As
shown in Fig. 2(a) and (b), the MMSTs generated from joint
based MoCap data for the jump and the goose-step motions
topologically resemble the subject’s skeletal structure quite
well as the distribution of the joint is scattered and the subject
fully exercises all the joints in these motions. We also show the
effect of MMST on marker based MoCap data as (c) and (d),
the MMSTs for the jump and the squat motions. The MMST
also do well in (c), but do less well in (d) due to little relative
motions among the markers on the shanks.

2) Motion Signature Composition: We construct a motion
signature to describe both the high-level and the low-level
morphological and kinematic characteristics of a MoCap se-
quence. Specifically, the high-level description is made by the
description of the MMST and the low-level description is made
by the description of the kinematic features between every
marker pair.

Inspired by the shape distribution descriptors for 3D shape
analysis [42], [43], we define a shape function of joint pairs
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Fig. 3. Shape distribution histograms for MMSTs of 4 different types of
motions.
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Fig. 4. Shape distribution histograms for MMSTs of the same type (i.e., jump)
of motions.

on the graph and use the distribution of shape function values
to statistically describe the characteristics of the MMST. For
a pair of joints, ji and jj , li,j denote the length of the shortest
path between them (i.e., the sum of edge weights on that path)
in the MMST and L denote the sum of the edge weights in the
whole MMST. To normalize the shortest distance and make
the shape function scale invariant, we divide the length by L
and define the corresponding shape function value between
ji and jj as s(ji, jj) = li,j/L. Assuming that there are
totally J joints, we compute the shape function values for
all the T = C(J, 2) joint pairs. The histogram of these shape
function values constitutes the shape distribution descriptor of
the MMST. Or, equivalently, we use an array of shape function
values on all T joint pairs as the shape descriptor for the
MMST.

We plot Fig. 3 and Fig. 4 to show the capability of
the shape distribution histogram in distinguishing different
motions. From Fig. 3, we can easily find that the histograms
for different motion types shows low similarity, from Fig. 4,
we find that histograms for same kind of motions shows high
similarity.

However, on the basis of experiments, the shape distribution
histogram itself does not achieve sufficient precision to classify
the motion types. Therefore, more dimensions are needed
to enhance the description and distinguishing capabilities of
motion descriptors, as described below.

A set of quantities is used to describe the absolute and
relative motion characteristics of each joint pair. The velocity
(v1) and acceleration (a1) of centroid of joint pair in each
frame are measured for describing the absolute motion, and
the Euclidean distance (d), relative velocity (v2), relative
acceleration (a2), relative angular velocity (v3), and relative
angular acceleration (a3) between the pair of joints at each
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frame are measured for describing the relative motion. The
motion information of each joint pair in a F -frame motion
sequence is then converted into seven curves: v1(t), a1(t),
d(t), v2(t), a2(t), v3(t) and a3(t), t = 1, 2, . . . , F . The first
three statistical moments are used to describe each curve, the
arithmetic square root of the variance and the cube root of the
skewness. By doing this, twenty-one quantities are extracted to
describe the kinematic characteristics of the joint pair. These
quantities are concatenated as the kinematic characteristics of
the joint pair and represented by ki, i ∈ [1, 21].

Finally, the computation of the motion signature is achieved
by combining the high-level and the low-level features of
each joint pair and placing all the joint pairs’ feature vectors
together to form a 2D matrix.

Suppose there are a total of T joint pairs combined. For the
p-th (1 ≤ p ≤ T ) joint pair, sp represent its shape function
value and kp,i, 1 ≤ i ≤ 21 the kinematic characteristics. The
feature vector, fp, is defined as fp = (sp, kp,1, kp,2, . . . , kp,21).
The motion signature of the MoCap sequence is finally formed
by putting the feature vectors of all T joint pairs together in
ascending order of their first component (i.e., shape function
values).

D. Distance Metric

We compute and sort the distances between the query’s
motion signature and those in the database for retrieval. To deal
with dimensionality inconsistency between motion signatures,
we exploit the shape function values of the feature vectors to
register two motion signatures.

1) Registration: Since the joint number is not restrict as
a fixed value, the motion signatures may contains different
numbers of feature vectors. For each feature vector in one
motion signature, we need to find its corresponding one in
the other motion signature. If the two motion sequences are
similar, they will have similar MMSTs and corresponding
joint pairs will have similar shape function values as well.
Therefore, for a feature vector with shape function value s in
one motion signature, we search for its correspondence from
the feature vectors whose shape function value is the closest to
s in the other motion signature. Since two motion sequences
may be highly dissimilar in subject structure and/or motion
type, there may be very few direct correspondences between
their joint pairs. Therefore, a flexible correspondence rather
than the best match correspondence is needed. We set up a
window to achieve the match, and details are described in
Sec. III-D2.

2) Distance Metric: Assume that there are two motion
signatures, S = [f1, f2, . . . , fP ] and S′ = [f ′1, f

′
2, . . . , f

′
P ′ ],

where fi, i ∈ [1, P ] and f ′j , j ∈ [1, P ′] are 22-dimensional
feature vectors and P and P ′ are the numbers of marker
pairs in the corresponding motion sequences, respectively. We
compute the symmetric distance between S and S′ according
to Eq. 1

D(S,S′) =
22∑
l=1

W[l]×DF (S,S
′, l) (1)

where W is the weighting vector which contains the weight
for each separate feature and DF (S,S

′, l), the symmetric
distance between S and S′ on the l-th feature, is defined as
Eq. 2

DF (S,S
′, l) =


DH(h, h′), l = 1

1
P

P∑
i=1

|fi[l]− f ′c(i)[l]|

+ 1
P ′

P ′∑
j=1

|f ′j [l]− fc′(j)[l]|, l∈ [2, 22]

(2)
In Eq. 2, h and h′ are the normalized shape distribution
histograms obtained from the shape function values in S and
S′, respectively, and DH(h, h′) denotes the difference between
h and h′ with the reciprocal of their intersection. It should
be noted that we compute the normalized shape distribution
histogram for each motion sequence in the database just once
and store it for later use. In Eq. 2, f ′c(i) (resp. fc′(j)) is the
corresponding feature vector of fi (resp. f ′j) with c(i) and c′(j)
defined as

c(i) = argmin
j∈[ji−w,ji+w]

22∑
l=1

W[l]× |fi[l]− f ′j [l]|,

c′(j) = argmin
i∈[ij−w,ij+w]

22∑
l=1

W[l]× |f ′j [l]− fi[l]| (3)

where ji (resp. ij) indexes the feature vector in S′ (resp.
S) with the closest shape function value to fi (resp. f ′j). As
formulated in Eq. 3, we set up a window, [−w,w], around the
closet feature vector to pick the best matching one to increase
robustness of the scheme. The empirical parameter w = 7 is
used in our scheme.

IV. EXPERIMENTS

In this section, we conduct comprehensive experiments
to evaluate the performance of our proposed generic video-
based MoCap data retrieval algorithm. Specifically, we set
one experiment to evaluate the performance of the proposed
scheme for video-based MoCap data retrieval. Besides, we
set another experiment to evaluate the performance of the
proposed motion signature.

A. Databases and Performance Metrics

We exploit a human MoCap database with 12 daily action
classes [10] and the detailed action classes can be found in
Tab. I. Specifically, there are 240 clips in the MoCap database
which are captured by five actors with various body shapes.
Each actor or actress performs each motion 4 times, resulting
in a total number of 240 clips in the MoCap database.

For the query video database, we also exploit the same
12 daily action classes. Three males and one female of
various body shapes are employed to shoot these videos by
a monocular camera. The videos are shot at four viewpoints
(i.e., Front, Back, Left and Right), and each class of the video
query database consists of 20 video clips.
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TABLE I
MAP STATISTICS OF NDVP [10] AND OUR PROPOSED METHOD.

Motion MAP statistics
(#) name NDVP [10] Ours
(1) phone 0.5292 09437
(2) jump 0.5019 0.8924
(3) punch 0.6684 0.5337
(4) bounce 0.6332 0.7892
(5) arm raise 0.5141 0.6565
(6) round walk 0.4723 0.5853
(7) side walk 0.4471 0.6849
(8) rope skip 0.2730 0.5634
(9) shoot 0.9861 0.8140
(10) badminton 0.2945 0.6412
(11) goose-step 0.7202 0.8894
(12) sit-down 0.7794 0.7263
average MAP 0.5683 0.7267

In this work, mean average precision (MAP), precision-
recall curve (P-R curve) and precision at n (P@n) are ex-
ploited to evaluate the performance of the proposed video-
based MoCap data retrieval algorithm as often used in the
general field of information retrieval.

For each query video clip, the fraction of relevant samples
in the result set gives the precision, while the fraction of all
relevant samples that has been returned gives the recall. If the
result set has a size of n, the precision gives P@n. By varying
n, we can obtain a P-R curve of this query. When n = N with
N being the size of the database, the average precision, AP,
of this query can be computed by Eq. 4

AP =
1

R

N∑
j=1

Ij ×
Rj

j
(4)

where R is the number of relevant samples in the database,
Ij = 1 if the jth ranking sample of the result set is relevant and
Ij = 0 otherwise, and Rj is the number of relevant samples
in the j top-ranking samples of the result set. P@n, P-R and
MAP statistics for that class can be obtained by averaging the
statistics of each query in a motion class.

B. Comparison with benchmark method

We compare our method with the NDVP method in work
[10]. Note that we do not compare with the work [9] as it
focuses on extracting similar (to the video query) sub-MoCap-
sequences through effective but time-consuming frame-to-
frame alignment, while our work targets at quick search of
similar whole MoCap clips based on overall motion charac-
teristics.

MAP statistics of the two methods are presented in Tab. I
for comparison. From Tab. I we can observe that the proposed
scheme outperforms NDVP [10] on most of motion classes.

In Fig. 5 and Fig. 6, we plot respectively for both methods
its average P@n (n=5, 10, 15, 20) statistics, P-R curves and
confusion matrix over all the action classes. NDVP shows
excellent retrieval performance on shoot motion, but the over-
all performance is unstable. The figures again shows better
performance of our method over NDVP [10].

C. Gap between query modalities

In this part, we examine the performance gap between
two modalities of query: video clip and MoCap sequence.
Specifically, we use MoCap sequences as queries, measure the
corresponding retrieval performance, and compare it with that
of the proposed video-based MoCap data retrieval as reported
in Section IV-B. For this experiment, we get an MAP of
88.53%, and show P@n (n=5, 10, 15, 20) statistics, P-R curves
and confusion matrix over all the action classes in Fig. 7. By
comparison, we observe that there still exists a performance
gap between the two query modalities. This is mainly due to
the challenge in precise 3D skeleton animation reconstruction
from a monocular 2D video clip.

V. CONCLUSIONS

We propose a novel generic video-based MoCap data re-
trieval scheme in this work. A CNN based 3D pose estimation
approach is adopted to reconstruct skeleton animations from
query video clips, which narrows the gap between these two
data modalities: 2D video clip and 3D motion sequence. A
statistical motion signature which consists of both high-level
and low-level characteristics is computed for effective motion
matching. The proposed scheme does not utilize a priori
knowledge of skeletal structure and works on MoCap data in
arbitrary skeleton structure. Experimental results demonstrate
the promising performance of the proposed scheme.

Nevertheless, more precise 3D animation reconstruction
methods are demanded to further reduce the performance gap
between the two modalities of query.
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Fig. 5. P@n statistics, P-R curves and confusion matrix of our scheme for video-based MoCap retrieval.

1 2 3 4 5 6 7 8 9 10 11 12

Motion No.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

P@5

P@10

P@15

P@20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

1

2

3

4

5

6

7

8

9

10

11

12

mean

43.06

2.66

1.44

0.34

12.47

7.50

13.91

7.06

0.00

14.56

1.25

0.41

0.00

44.31

0.00

0.06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

12.94

0.13

0.03

60.81

25.19

0.47

0.00

0.00

1.06

0.03

6.53

0.00

0.03

0.00

0.31

0.00

58.38

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

21.91

27.72

0.00

4.34

44.41

26.81

16.91

0.66

1.72

11.19

11.66

8.00

0.00

0.00

0.00

0.00

0.00

42.72

1.75

0.00

0.00

0.00

0.00

0.06

9.66

0.09

0.00

3.78

9.25

21.72

32.63

23.44

0.00

7.66

1.13

2.50

0.56

0.91

0.00

0.00

0.66

0.00

0.00

13.59

0.00

0.03

0.91

0.59

22.41

0.00

37.72

0.00

26.56

0.06

25.72

19.34

98.00

44.63

13.47

0.19

2.28

10.44

0.03

0.53

6.19

1.09

0.22

8.13

0.25

15.34

3.09

0.59

0.00

0.47

0.00

0.00

0.00

0.09

8.87

26.72

0.00

0.06

68.50

0.00

0.00

13.06

0.00

7.38

0.00

0.00

0.00

0.00

0.00

0.00

0.00

74.66

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

P@N P-R curves confusion matrix
Fig. 6. P@n statistics, P-R curves and confusion matrix of NDVP for video-based MoCap retrieval.
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Fig. 7. P@n statistics, P-R curves and confusion matrix of our scheme for MoCap retrieval.
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